Research Article
BibTex RIS Cite

Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture

Year 2025, Volume: 4 Issue: 1, 30 - 43, 18.02.2025
https://doi.org/10.62520/fujece.1423312

Abstract

In this paper, the channel covariance estimation of a single mobile station (MS) in a narrowband millimeter wave (mmWave) communication system was addressed. The communication system worked in time division duplex (TDD) mode and the channel covariance was estimated in the uplink communication. The base station (BS) had multiple antennas with a hybrid architecture of radio frequency (RF) chains made up of analog and digital combiners, while the MS had a single antenna. The investigated system model assumed the shared combining matrix scheme where the same combining matrix was used across multiple coherence blocks of the mmWave channel. The application of the sparse signal recovery algorithms including the simultaneous orthogonal matching pursuit (SOMP), the multiple response sparse Bayesian learning (MSBL), and the correlated sparse Bayesian learning (CSBL) to the system model were shown. The algorithms were evaluated numerically, and their normalized mean square error (NMSE) performances were compared against the benchmark oracle minimum mean square error (MMSE) estimator in multiple scenarios of varying number of RF chains at the BS and sparsity ratios for modeling the mmWave channel. The numerical results indicated that the CSBL algorithm provided the NMSE results closest to that of the oracle MMSE estimator in all the scenarios.

References

  • R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems," IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436-453, 2016.
  • T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, and S. Mandal, "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, pp. 78729-78757, 2019.
  • J. Mo, P. Schniter, and R. W. Heath, "Channel Estimation in Broadband Millimeter Wave MIMO Systems with Few-Bit ADCs," IEEE Trans. Signal Process., vol. 66, no. 5, pp. 1141-1154, 2018.
  • S. Huang, D. Qiu, and T. D. Tran, "Bayesian Massive MIMO Channel Estimation with Parameter Estimation Using Low-Resolution ADCs," in IEEE ICASSP, Toronto, Canada, pp. 4830-4834, 2021.
  • R. Zhang, L. Yang, M. Tang, W. Tan, and J. Zhao, "Channel Estimation for mmWave Massive MIMO Systems with Mixed-ADC Architecture," IEEE Open J. Comm. Soc., vol. 4, pp. 606-613, 2023.
  • X. Yu, J. -C. Shen, J. Zhang, and K. B. Letaief, "Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems," IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485-500, 2016.
  • X. Xue, Y. Wang, L. Yang, J. Shi, and Z. Li, "Energy-Efficient Hybrid Precoding for Massive MIMO mmWave Systems With a Fully-Adaptive-Connected Structure," IEEE Trans. Comm., vol. 68, no. 6, pp. 3521-3535, 2020.
  • J. Lee, G. -T. Gil, and Y. H. Lee, "Channel Estimation via Orthogonal Matching Pursuit for Hybrid MIMO Systems in Millimeter Wave Communications," IEEE Trans. Comm., vol. 64, no. 6, pp. 2370-2386, 2016.
  • S. Park, and R. W. Heath, "Spatial Channel Covariance Estimation for the Hybrid MIMO Architecture: A Compressive Sensing-Based Approach," IEEE Trans. Wireless Comm., vol. 17, no. 12, pp. 8047-8062, 2018.
  • L. Weiland, C. Stöckle, M. Würth, T. Weinberger, and W. Utschick, "OMP with Grid-Less Refinement Steps for Compressive mmWave MIMO Channel Estimation," in IEEE 10th SAM, pp. 543-547, 2018.
  • C. K. Anjinappa, A. C. Gürbüz, Y. Yapıcı, and İ. Güvenç, "Off-Grid Aware Channel and Covariance Estimation in mmWave Networks," IEEE Trans. Comm., vol. 68, no. 6, pp. 3908-3921, 2020.
  • R. V. Şenyuva, and E. Anarım, "Multigrid Based Sparse Recovery Method for Multidimensional Harmonic Retrieval," in IEEE 28th SIU, pp. 1-4, 2020.
  • A. Ali, N. González-Prelcic, and R. W. Heath, "Spatial Covariance Estimation for Millimeter Wave Hybrid Systems Using Out-of-Band Information," IEEE Trans. Wireless Comm., vol. 18, no. 12, pp. 5471-5485, 2019.
  • D. P. Wipf, and B. D. Rao, "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, 2007.
  • Z. Zhang, and B. D. Rao, "Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning," IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 912-926, 2011.
  • D. Prasanna, and C. R. Murthy, "mmWave Channel Estimation via Compressive Covariance Estimation: Role of Sparsity and Intra-Vector Correlation," IEEE Trans. Signal Process., vol. 69, pp. 2356-2370, 2021.
  • J. N. Pisharody, A. Rajoriya, N. Gupta, and R. Budhiraja, "Fast Correlated SBL Algorithm for Estimating Correlated Sparse Millimeter Wave Channels," IEEE Comm. Letters, vol. 27, no. 5, pp. 1407-1411, 2023.
  • V. B. Shukla, R. Mitra, O. Krejcar, V. Bhatia, and K. Choi, "Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems With Non-Ideal Hardware," IEEE Trans. on Veh. Tech., vol. 72, no. 9, pp. 11913-11923, 2023.
  • T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge: Cambridge University Press, 2016.
  • J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," EURASIP J. Signal Process., vol. 86, pp. 572-588, 2006.
  • B. L. Sturm, and M. G. Christensen, "Comparison of orthogonal matching pursuit implementations," in 20th EUSIPCO, pp. 220-224, 2012.

Karma Mimarideki Çok-Girişli Çok-Çıkışlı Sistemde Seyrek Sinyal Geriçatım Yöntemlerini Kullanarak Milimetrik Dalga Kanalı Uzamsal Kovaryansının Kestirilmesi

Year 2025, Volume: 4 Issue: 1, 30 - 43, 18.02.2025
https://doi.org/10.62520/fujece.1423312

Abstract

Bu çalışmada milimetrik dalga bandını kullanan darbant haberleşme sisteminde tek bir kullanıcıya ait kanalın kovaryans kestirimi incelenmektedir. Haberleşme sistemi zaman bölüşümlü çalışmaktadır ve kullanıcıdan baz istasyonu yönündeki kanal için kovaryans kestirimi yapılmaktadır. Baz istasyonu çok antenli ve radyo frekans (RF) zinciri hem analog hem sayısal birleştiricilerden oluşan çok-girişli çok-çıkışlı karma mimariye sahipken, kullanıcının tek anteni vardır. Ele alınan sistem modelinde ortak birleştirici matris yönteminin, milimetrik dalga kanalı uyum süresi boyunca gönderilen pilot bloklar için aynı birleştirici matrisinin uygulanması, kullanıldığı varsayılmaktadır. Seyrek sinyal geriçatım yöntemlerinden eşzamanlı normal uyum kovalama, çok ölçümlü seyrek Bayes öğrenme ve korelasyonlu seyrek Bayes öğrenmenin sistem modeline uygulanışı gösterilmektedir. İncelenen yöntemlerin sayısal sonuçları hesaplanarak normalleştirilmiş en küçük ortalama karesel hata başarımları değişen RF zincir sayısı ve milimetrik kanal seyreklik oranları için referans en küçük ortalama kare (EKOK) kestiricisiyle karşılaştırılmaktadır. Sayısal sonuçlar tüm deneylerde referans EKOK kestiricisine en yakın başarımların, korelasyonlu seyrek Bayes öğrenmeye ait olduğunu göstermektedir.

References

  • R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems," IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436-453, 2016.
  • T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, and S. Mandal, "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, pp. 78729-78757, 2019.
  • J. Mo, P. Schniter, and R. W. Heath, "Channel Estimation in Broadband Millimeter Wave MIMO Systems with Few-Bit ADCs," IEEE Trans. Signal Process., vol. 66, no. 5, pp. 1141-1154, 2018.
  • S. Huang, D. Qiu, and T. D. Tran, "Bayesian Massive MIMO Channel Estimation with Parameter Estimation Using Low-Resolution ADCs," in IEEE ICASSP, Toronto, Canada, pp. 4830-4834, 2021.
  • R. Zhang, L. Yang, M. Tang, W. Tan, and J. Zhao, "Channel Estimation for mmWave Massive MIMO Systems with Mixed-ADC Architecture," IEEE Open J. Comm. Soc., vol. 4, pp. 606-613, 2023.
  • X. Yu, J. -C. Shen, J. Zhang, and K. B. Letaief, "Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems," IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485-500, 2016.
  • X. Xue, Y. Wang, L. Yang, J. Shi, and Z. Li, "Energy-Efficient Hybrid Precoding for Massive MIMO mmWave Systems With a Fully-Adaptive-Connected Structure," IEEE Trans. Comm., vol. 68, no. 6, pp. 3521-3535, 2020.
  • J. Lee, G. -T. Gil, and Y. H. Lee, "Channel Estimation via Orthogonal Matching Pursuit for Hybrid MIMO Systems in Millimeter Wave Communications," IEEE Trans. Comm., vol. 64, no. 6, pp. 2370-2386, 2016.
  • S. Park, and R. W. Heath, "Spatial Channel Covariance Estimation for the Hybrid MIMO Architecture: A Compressive Sensing-Based Approach," IEEE Trans. Wireless Comm., vol. 17, no. 12, pp. 8047-8062, 2018.
  • L. Weiland, C. Stöckle, M. Würth, T. Weinberger, and W. Utschick, "OMP with Grid-Less Refinement Steps for Compressive mmWave MIMO Channel Estimation," in IEEE 10th SAM, pp. 543-547, 2018.
  • C. K. Anjinappa, A. C. Gürbüz, Y. Yapıcı, and İ. Güvenç, "Off-Grid Aware Channel and Covariance Estimation in mmWave Networks," IEEE Trans. Comm., vol. 68, no. 6, pp. 3908-3921, 2020.
  • R. V. Şenyuva, and E. Anarım, "Multigrid Based Sparse Recovery Method for Multidimensional Harmonic Retrieval," in IEEE 28th SIU, pp. 1-4, 2020.
  • A. Ali, N. González-Prelcic, and R. W. Heath, "Spatial Covariance Estimation for Millimeter Wave Hybrid Systems Using Out-of-Band Information," IEEE Trans. Wireless Comm., vol. 18, no. 12, pp. 5471-5485, 2019.
  • D. P. Wipf, and B. D. Rao, "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, 2007.
  • Z. Zhang, and B. D. Rao, "Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning," IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 912-926, 2011.
  • D. Prasanna, and C. R. Murthy, "mmWave Channel Estimation via Compressive Covariance Estimation: Role of Sparsity and Intra-Vector Correlation," IEEE Trans. Signal Process., vol. 69, pp. 2356-2370, 2021.
  • J. N. Pisharody, A. Rajoriya, N. Gupta, and R. Budhiraja, "Fast Correlated SBL Algorithm for Estimating Correlated Sparse Millimeter Wave Channels," IEEE Comm. Letters, vol. 27, no. 5, pp. 1407-1411, 2023.
  • V. B. Shukla, R. Mitra, O. Krejcar, V. Bhatia, and K. Choi, "Performance Analysis of Sparse Channel Estimators for Millimeter Wave Hybrid MIMO Systems With Non-Ideal Hardware," IEEE Trans. on Veh. Tech., vol. 72, no. 9, pp. 11913-11923, 2023.
  • T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge: Cambridge University Press, 2016.
  • J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," EURASIP J. Signal Process., vol. 86, pp. 572-588, 2006.
  • B. L. Sturm, and M. G. Christensen, "Comparison of orthogonal matching pursuit implementations," in 20th EUSIPCO, pp. 220-224, 2012.
There are 21 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Rıfat Volkan Şenyuva 0000-0003-2928-0627

Publication Date February 18, 2025
Submission Date January 21, 2024
Acceptance Date June 7, 2024
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Şenyuva, R. V. (2025). Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture. Firat University Journal of Experimental and Computational Engineering, 4(1), 30-43. https://doi.org/10.62520/fujece.1423312
AMA Şenyuva RV. Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture. FUJECE. February 2025;4(1):30-43. doi:10.62520/fujece.1423312
Chicago Şenyuva, Rıfat Volkan. “Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture”. Firat University Journal of Experimental and Computational Engineering 4, no. 1 (February 2025): 30-43. https://doi.org/10.62520/fujece.1423312.
EndNote Şenyuva RV (February 1, 2025) Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture. Firat University Journal of Experimental and Computational Engineering 4 1 30–43.
IEEE R. V. Şenyuva, “Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture”, FUJECE, vol. 4, no. 1, pp. 30–43, 2025, doi: 10.62520/fujece.1423312.
ISNAD Şenyuva, Rıfat Volkan. “Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture”. Firat University Journal of Experimental and Computational Engineering 4/1 (February 2025), 30-43. https://doi.org/10.62520/fujece.1423312.
JAMA Şenyuva RV. Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture. FUJECE. 2025;4:30–43.
MLA Şenyuva, Rıfat Volkan. “Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 1, 2025, pp. 30-43, doi:10.62520/fujece.1423312.
Vancouver Şenyuva RV. Covariance Estimation Of Millimeter Wave Channels Using Sparse Signal Recovery Algorithms In A Hybrid MIMO Architecture. FUJECE. 2025;4(1):30-43.