[1] P.R. Beesack and J.E. Pecaric, On Jessen’s inequality for convex functions, J. Math. Anal. Appl.110 (1985), 536-552.
$\href{https://doi.org/10.1016/0022-247X(85)90315-4}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001542604&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=2}{[\mbox{Scopus}]}
%\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000513943500001}{[\mbox{Web of Science}]}$
[2] J.E. Pecaric, On Jessen’s inequality for convex functions (III), J. Math. Anal. Appl., 156 (1991), 231-239. $\href{https://doi.org/10.1016/0022-247X(91)90393-E}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-5644248294&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}$
[3] J.E. Pecaric and P.R. Beesack, On Jessen’s inequality for convex functions (II), J. Math. Anal. Appl., 156 (1991), 231-239. $\href{https://doi.org/10.1016/0022-247X(86)90296-9}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38249039395&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]}$
[4] D. Andrica and C. Badea, Gruss’ inequality for positive linear functionals, Periodica Math. Hung., 19 (1998), 155-167. $\href{https://doi.org/10.1007/BF01848061}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0010162730&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Gr%C3%BCss%27+inequality+for+positive+linear+functionals%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=0}{[\mbox{Scopus}]}
$
[5] S.S. Dragomir, A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang J. Math., 24(1) (1992), 101-106.
[6] S.S. Dragomir, On a reverse of Jessen’s inequality for isotonic linear functionals, J. Ineq. Pure & Appl. Math., 2(3)(2001), Article 36.
[7] S.S. Dragomir, On the Jessen’s inequality for isotonic linear functionals, Nonlinear Anal. Forum, 7(2)(2002), 139-151.
[8] S.S. Dragomir, On the Lupas-Beesack-Pecaric inequality for isotonic linear functionals, Nonlinear Funct. Anal. & Appl., 7(2)(2002), 285-298.
[9] S.S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478. $\href{https://doi.org/10.1017/S000497270004051X}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33845754082&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bounds+for+the+normalized+Jensen+functional%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=3}{[\mbox{Scopus}]}$
[10] S.S. Dragomir and N.M. Ionescu, On some inequalities for convex-dominated functions, L’Anal. Num. Theor. L’Approx., 19(1) (1990),
21-27.
[11] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria
University, 2000. http://rgmia.vu.edu.au/monographs.html
[12] S.S. Dragomir, C.E.M. Pearce and J.E. Peˇcari´c, On Jessen’s and related inequalities for isotonic sublinear functionals, Acta. Sci. Math., 61
(1995), 373-382.
[13] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361(1) (2010), 262-269 $\href{https://doi.org/10.1016/j.jmaa.2009.08.059}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-70349378865&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Improved+Young+and+Heinz+inequalities+for+matrices%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000273063900024}{[\mbox{Web of Science}]}$
[14] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59(9) (2011), 1031-1037.
$\href{https://doi.org/10.1080/03081087.2010.551661}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79961134150&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Reverse+Young+and+Heinz+inequalities+for+matrices%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000293598100007}{[\mbox{Web of Science}]}$
[15] A. Lupas¸, A generalisation of Hadamard’s inequalities for convex functions, Univ. Beograd. Elek. Fak., 577-579 (1976), 115-121.
[16] D.I. Cartwright and M.J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
$$
[17] D.K. Callebaut, Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), 491-494. $\href{https://doi.org/10.1016/0022-247X(65)90016-8}{[\mbox{CrossRef}]}
%\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001542604&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=2}{[\mbox{Scopus}]}
%\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000513943500001}{[\mbox{Web of Science}]}$
Some Refinements and Reverses of Callebaut's Inequality for Isotonic Functionals via a Result Due to Cartwright and Field
In this paper we obtain some refinements and reverses of Callebaut's inequality for isotonic functionals via a result of Young's inequality due to Cartwright and Field.
[1] P.R. Beesack and J.E. Pecaric, On Jessen’s inequality for convex functions, J. Math. Anal. Appl.110 (1985), 536-552.
$\href{https://doi.org/10.1016/0022-247X(85)90315-4}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001542604&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=2}{[\mbox{Scopus}]}
%\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000513943500001}{[\mbox{Web of Science}]}$
[2] J.E. Pecaric, On Jessen’s inequality for convex functions (III), J. Math. Anal. Appl., 156 (1991), 231-239. $\href{https://doi.org/10.1016/0022-247X(91)90393-E}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-5644248294&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}$
[3] J.E. Pecaric and P.R. Beesack, On Jessen’s inequality for convex functions (II), J. Math. Anal. Appl., 156 (1991), 231-239. $\href{https://doi.org/10.1016/0022-247X(86)90296-9}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38249039395&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]}$
[4] D. Andrica and C. Badea, Gruss’ inequality for positive linear functionals, Periodica Math. Hung., 19 (1998), 155-167. $\href{https://doi.org/10.1007/BF01848061}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0010162730&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Gr%C3%BCss%27+inequality+for+positive+linear+functionals%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=0}{[\mbox{Scopus}]}
$
[5] S.S. Dragomir, A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang J. Math., 24(1) (1992), 101-106.
[6] S.S. Dragomir, On a reverse of Jessen’s inequality for isotonic linear functionals, J. Ineq. Pure & Appl. Math., 2(3)(2001), Article 36.
[7] S.S. Dragomir, On the Jessen’s inequality for isotonic linear functionals, Nonlinear Anal. Forum, 7(2)(2002), 139-151.
[8] S.S. Dragomir, On the Lupas-Beesack-Pecaric inequality for isotonic linear functionals, Nonlinear Funct. Anal. & Appl., 7(2)(2002), 285-298.
[9] S.S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478. $\href{https://doi.org/10.1017/S000497270004051X}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33845754082&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bounds+for+the+normalized+Jensen+functional%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=3}{[\mbox{Scopus}]}$
[10] S.S. Dragomir and N.M. Ionescu, On some inequalities for convex-dominated functions, L’Anal. Num. Theor. L’Approx., 19(1) (1990),
21-27.
[11] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria
University, 2000. http://rgmia.vu.edu.au/monographs.html
[12] S.S. Dragomir, C.E.M. Pearce and J.E. Peˇcari´c, On Jessen’s and related inequalities for isotonic sublinear functionals, Acta. Sci. Math., 61
(1995), 373-382.
[13] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361(1) (2010), 262-269 $\href{https://doi.org/10.1016/j.jmaa.2009.08.059}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-70349378865&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Improved+Young+and+Heinz+inequalities+for+matrices%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000273063900024}{[\mbox{Web of Science}]}$
[14] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59(9) (2011), 1031-1037.
$\href{https://doi.org/10.1080/03081087.2010.551661}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79961134150&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Reverse+Young+and+Heinz+inequalities+for+matrices%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000293598100007}{[\mbox{Web of Science}]}$
[15] A. Lupas¸, A generalisation of Hadamard’s inequalities for convex functions, Univ. Beograd. Elek. Fak., 577-579 (1976), 115-121.
[16] D.I. Cartwright and M.J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
$$
[17] D.K. Callebaut, Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), 491-494. $\href{https://doi.org/10.1016/0022-247X(65)90016-8}{[\mbox{CrossRef}]}
%\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001542604&origin=resultslist&sort=plf-f&src=s&sid=4cc854a753b93f4c5fe2d4fbfcda623d&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Jessen%27s+inequality+for+convex+functions%22%29&sl=78&sessionSearchId=4cc854a753b93f4c5fe2d4fbfcda623d&relpos=2}{[\mbox{Scopus}]}
%\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000513943500001}{[\mbox{Web of Science}]}$
There are 17 citations in total.
Details
Primary Language
English
Subjects
Pure Mathematics (Other), Approximation Theory and Asymptotic Methods, Applied Mathematics (Other)
Dragomır, S. (2024). Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field. Fundamental Journal of Mathematics and Applications, 7(1), 1-11. https://doi.org/10.33401/fujma.1362681
AMA
Dragomır S. Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field. Fundam. J. Math. Appl. March 2024;7(1):1-11. doi:10.33401/fujma.1362681
Chicago
Dragomır, Sever. “Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field”. Fundamental Journal of Mathematics and Applications 7, no. 1 (March 2024): 1-11. https://doi.org/10.33401/fujma.1362681.
EndNote
Dragomır S (March 1, 2024) Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field. Fundamental Journal of Mathematics and Applications 7 1 1–11.
IEEE
S. Dragomır, “Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field”, Fundam. J. Math. Appl., vol. 7, no. 1, pp. 1–11, 2024, doi: 10.33401/fujma.1362681.
ISNAD
Dragomır, Sever. “Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field”. Fundamental Journal of Mathematics and Applications 7/1 (March 2024), 1-11. https://doi.org/10.33401/fujma.1362681.
JAMA
Dragomır S. Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field. Fundam. J. Math. Appl. 2024;7:1–11.
MLA
Dragomır, Sever. “Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 1, 2024, pp. 1-11, doi:10.33401/fujma.1362681.
Vancouver
Dragomır S. Some Refinements and Reverses of Callebaut’s Inequality for Isotonic Functionals via a Result Due to Cartwright and Field. Fundam. J. Math. Appl. 2024;7(1):1-11.