Research Article
BibTex RIS Cite
Year 2023, , 211 - 217, 31.12.2023
https://doi.org/10.33401/fujma.1364368

Abstract

References

  • [1] G. Beer, Wijsman convergence: A survey, Set-Valued Anal., 2 (1994), 77-94.
  • [2] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70(1) (1964), 186-188.
  • [3] F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87-99.
  • [4] U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Progress Appl. Math., 4(2) (2012), 99-109.
  • [5] N. Pancaroğlu and F. Nuray, On invariant statistically convergence and lacunary invariant statistical convergence of sequences of sets, Progress Appl. Math., 5(2) (2013), 23-29.
  • [6] U. Ulusu and F. Nuray, On asymptotically lacunary statistical equivalent set sequences, J. Math., 2013 (2013), Article ID 310438, 1-5.
  • [7] N. Pancaroğlu, F. Nuray and E. Savas¸, On asymptotically lacunary invariant statistical equivalent set sequences, AIP Conf. Proc., 1558(1) (2013), 780-781.
  • [8] R.P. Agnew, On deferred Cesaro mean, Comm. Ann. Math., 33 (1932), 413-421.
  • [9] M. Küçükaslan and M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56 (2016), 357-366.
  • [10] F. Nuray, Strongly deferred invariant convergence and deferred invariant statistical convergence, J. Computer Sci. Comput. Math., 10(1) (2020), 1-6.
  • [11] M. Altınok, B. İnan and M. Küçükaslan, On deferred statistical convergence of sequences of sets in metric space, Turk. J. Math. Comput. Sci., 3 (2015), 1-9.
  • [12] M. Et and M. C¸ . Yılmazer, On deferred statistical convergence of sequences of sets, AIMS Math., 5(3) (2020), 2143-2152.
  • [13] E. Gülle, Deferred invariant statistical convergence of order a for set sequences, Honam Math. J., 45(3) (2023), 555-571.
  • [14] M. Altınok, B. İnan and M. Küçükaslan, On asymptotically Wijsman deferred statistical equivalence of sequence of sets, Thai J. Math., 18(2) (2020), 803–817.
  • [15] M. Et, H. Altınok and R. Çolak, On Wijsman asymptotically deferred statistical equivalence of order a for set sequences, AIP Conf. Proc., 1926(1) (2018), 020016.
  • [16] R. Çolak, Statistical Convergence of Order a, Anamaya Publishers, New Delhi, (2010).
  • [17] M. Et, M. C¸ ınar and H. S¸eng¨ul, Deferred statistical convergence in metric spaces, Conf. Proc. Sci. Tech., 2(3) (2019), 189-193.
  • [18] M. Et, M. Çınar and H. S¸eng¨ul Kandemir, Deferred statistical convergence of order a in metric spaces, AIMS Math., 5(4) (2020), 3731-3740.
  • [19] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci., 16(4) (1993), 755-762.
  • [20] M. Mursaleen and O.H.H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
  • [21] R.F. Patterson, On asymptotically statistically equivalent sequences, Demostr. Math., 36(1) (2003), 149-153.
  • [22] E. Savas¸ and F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309-315.

Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$

Year 2023, , 211 - 217, 31.12.2023
https://doi.org/10.33401/fujma.1364368

Abstract

With this work, we present the asymptotical strongly $p$-deferred invariant and asymptotical deferred invariant statistical equivalence of order $\alpha$ ($0<\alpha\leq 1$) for sequences of sets in the Wijsman sense. Furthermore, we investigate the connections between these concepts and conduct their properties.

References

  • [1] G. Beer, Wijsman convergence: A survey, Set-Valued Anal., 2 (1994), 77-94.
  • [2] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70(1) (1964), 186-188.
  • [3] F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87-99.
  • [4] U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Progress Appl. Math., 4(2) (2012), 99-109.
  • [5] N. Pancaroğlu and F. Nuray, On invariant statistically convergence and lacunary invariant statistical convergence of sequences of sets, Progress Appl. Math., 5(2) (2013), 23-29.
  • [6] U. Ulusu and F. Nuray, On asymptotically lacunary statistical equivalent set sequences, J. Math., 2013 (2013), Article ID 310438, 1-5.
  • [7] N. Pancaroğlu, F. Nuray and E. Savas¸, On asymptotically lacunary invariant statistical equivalent set sequences, AIP Conf. Proc., 1558(1) (2013), 780-781.
  • [8] R.P. Agnew, On deferred Cesaro mean, Comm. Ann. Math., 33 (1932), 413-421.
  • [9] M. Küçükaslan and M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56 (2016), 357-366.
  • [10] F. Nuray, Strongly deferred invariant convergence and deferred invariant statistical convergence, J. Computer Sci. Comput. Math., 10(1) (2020), 1-6.
  • [11] M. Altınok, B. İnan and M. Küçükaslan, On deferred statistical convergence of sequences of sets in metric space, Turk. J. Math. Comput. Sci., 3 (2015), 1-9.
  • [12] M. Et and M. C¸ . Yılmazer, On deferred statistical convergence of sequences of sets, AIMS Math., 5(3) (2020), 2143-2152.
  • [13] E. Gülle, Deferred invariant statistical convergence of order a for set sequences, Honam Math. J., 45(3) (2023), 555-571.
  • [14] M. Altınok, B. İnan and M. Küçükaslan, On asymptotically Wijsman deferred statistical equivalence of sequence of sets, Thai J. Math., 18(2) (2020), 803–817.
  • [15] M. Et, H. Altınok and R. Çolak, On Wijsman asymptotically deferred statistical equivalence of order a for set sequences, AIP Conf. Proc., 1926(1) (2018), 020016.
  • [16] R. Çolak, Statistical Convergence of Order a, Anamaya Publishers, New Delhi, (2010).
  • [17] M. Et, M. C¸ ınar and H. S¸eng¨ul, Deferred statistical convergence in metric spaces, Conf. Proc. Sci. Tech., 2(3) (2019), 189-193.
  • [18] M. Et, M. Çınar and H. S¸eng¨ul Kandemir, Deferred statistical convergence of order a in metric spaces, AIMS Math., 5(4) (2020), 3731-3740.
  • [19] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci., 16(4) (1993), 755-762.
  • [20] M. Mursaleen and O.H.H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
  • [21] R.F. Patterson, On asymptotically statistically equivalent sequences, Demostr. Math., 36(1) (2003), 149-153.
  • [22] E. Savas¸ and F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309-315.
There are 22 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Esra Gülle 0000-0001-5575-2937

Uğur Ulusu 0000-0001-7658-6114

Publication Date December 31, 2023
Submission Date September 21, 2023
Acceptance Date November 2, 2023
Published in Issue Year 2023

Cite

APA Gülle, E., & Ulusu, U. (2023). Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$. Fundamental Journal of Mathematics and Applications, 6(4), 211-217. https://doi.org/10.33401/fujma.1364368
AMA Gülle E, Ulusu U. Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$. Fundam. J. Math. Appl. December 2023;6(4):211-217. doi:10.33401/fujma.1364368
Chicago Gülle, Esra, and Uğur Ulusu. “Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$”. Fundamental Journal of Mathematics and Applications 6, no. 4 (December 2023): 211-17. https://doi.org/10.33401/fujma.1364368.
EndNote Gülle E, Ulusu U (December 1, 2023) Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$. Fundamental Journal of Mathematics and Applications 6 4 211–217.
IEEE E. Gülle and U. Ulusu, “Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$”, Fundam. J. Math. Appl., vol. 6, no. 4, pp. 211–217, 2023, doi: 10.33401/fujma.1364368.
ISNAD Gülle, Esra - Ulusu, Uğur. “Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$”. Fundamental Journal of Mathematics and Applications 6/4 (December 2023), 211-217. https://doi.org/10.33401/fujma.1364368.
JAMA Gülle E, Ulusu U. Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$. Fundam. J. Math. Appl. 2023;6:211–217.
MLA Gülle, Esra and Uğur Ulusu. “Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$”. Fundamental Journal of Mathematics and Applications, vol. 6, no. 4, 2023, pp. 211-7, doi:10.33401/fujma.1364368.
Vancouver Gülle E, Ulusu U. Wijsman Deferred Invariant Statistical and Strong $p$-Deferred Invariant Equivalence of Order $\alpha$. Fundam. J. Math. Appl. 2023;6(4):211-7.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a