Research Article
BibTex RIS Cite

Two New General Integral Results Related to the Hilbert Integral Inequality

Year 2025, , 1 - 11, 31.03.2025
https://doi.org/10.33401/fujma.1560482

Abstract

In this article, we generalize two integral results from the literature. The first result concerns a flexible double integral inequality, considering a specific form for the integrated function and a double integral as a lower or upper bound. Several examples are discussed, as well as some of its indirect connections with the Hilbert integral inequality. The second result also gives a double integral inequality, but with the product of the square root of simple integrals, following the spirit of the Hilbert integral inequality. Several theoretical and numerical examples are discussed. Both of our results have the property of being dependent on several adjustable functions and parameters, thus offering a wide range of applications.

References

  • [1] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, (1934). $ \href{https://mathematicalolympiads.wordpress.com/wp-content/uploads/2012/08/inequalities-hardy-littlewood-polya.pdf}{\mbox{[Web]}}$
  • [2] E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, (1961). $\href{https://doi.org/10.1007/978-3-642-64971-4}{\mbox{[CrossRef]}} $
  • [3] W. Walter, Differential and Integral Inequalities, Springer, Berlin, (1970). $\href{https://doi.org/10.1007/978-3-642-86405-6}{\mbox{[CrossRef]}} $
  • [4] D. Bainov and P.Simeonov, Integral Inequalities and Applications, Kluwer Academic, Dordrecht, (1992). $\href{https://doi.org/10.1007/978-94-015-8034-2}{\mbox{[CrossRef]}} $
  • [5] B.C. Yang, Hilbert-Type Integral Inequalities, Bentham Science Publishers, The United Arab Emirates, (2009). $\href{http://dx.doi.org/10.2174/97816080505501090101}{\mbox{[CrossRef]}} $
  • [6] S. Erden, M.Z. Sarıkaya, B. Gökkurt Özdemir and N. Uyanık, Wirtinger-type inequalities for Caputo fractional derivatives via Taylor’s formula, J. Inequal. Appl., 2024(1) (2024), 1-17. $ \href{https://doi.org/10.1186/s13660-024-03194-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85203059264&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Wirtinger-type+inequalities+for+Caputo+fractional+derivatives+via+Taylor%27s+formula%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001306454300001}{\mbox{[Web of Science]}}$
  • [7] B. Bayraktar, S.I. Butt, J.E. Napoles and F. Rabossi, Some new estimates for integral inequalities and their applications, Ukr. Math. J., 76(2) (2024), 169-191. $\href{https://doi.org/10.1007/s11253-024-02315-w}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85201432292&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+new+estimates+for+integral+inequalities+and+their+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001294610100005}{\mbox{[Web of Science]}} $
  • [8] W.M. Hasan, H.M. El-Owaidy, A.A. El-Deeb and H.M. Rezk, Generalizations of integral inequalities similar to Hardy inequality on time scales, J. Math. Computer Sci., 32(3) (2024), 241-256. $\href{http://dx.doi.org/10.22436/jmcs.032.03.05}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85175253012&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalizations+of+integral+inequalities+similar+to+Hardy+inequality+on+time+scales%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} $
  • [9] M. Bhattacharyya and S.S. Sana, A second order quadratic integral inequality associated with regular problems, Math. Model. Control, 4(1) (2024), 141-151. $\href{https://doi.org/10.3934/mmc.2024013}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85191452851&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+second+order+quadratic+integral+inequality+associated+with+regular+problems%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001202568500001}{\mbox{[Web of Science]}} $
  • [10] B.C. Yang, On Hilbert’s integral inequality, J. Math. Anal. Appl., 220(2) (1998), 778-785. $\href{https://doi.org/10.1006/jmaa.1997.5877}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0040682327&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Hilbert%27s+integral+inequality%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc&relpos=5}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000073041300026}{\mbox{[Web of Science]}} $
  • [11] B.C. Yang, On the norm of an integral operator and applications, J. Math. Anal. Appl., 321(1) (2006), 182-192. $ \href{https://doi.org/10.1016/j.jmaa.2005.07.071}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33646362258&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+norm+of+an+integral+operator+and+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000238807700016}{\mbox{[Web of Science]}}$
  • [12] J.S. Xu, Hardy-Hilbert’s inequalities with two parameters, Adv. Math., 36(2) (2007), 63-76.
  • [13] B.C. Yang, On the norm of a Hilbert’s type linear operator and applications, J. Math. Anal. Appl., 325(1) (2007), 529-541. $\href{https://doi.org/10.1016/j.jmaa.2006.02.006}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33750359681&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+norm+of+a+Hilbert%27s+type+linear+operator+and+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000242335300039}{\mbox{[Web of Science]}} $
  • [14] B.C. Yang, The Norm of Operator and Hilbert-Type Inequalities, Science Press, Beijing, (2009).
  • [15] B.C. Yang, Hilbert-type integral inequality with non-homogeneous kernel, J. Shanghai Univ., 17(5) (2011), 603-605. $\href{https://doi.org/10.3969/j.issn.1007-2861.2011.05.006}{\mbox{[CrossRef]}} $
  • [16] P. Xiuying and G.Mingzhe, On Hilbert’s integral inequality and its applications, Math. Inequal. Appl., 14(2) (2011), 271-279. $\href{https://doi.org/10.7153/mia-14-22}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79952095348&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Hilbert%27s+integral+inequality+and+its+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000291112700002}{\mbox{[Web of Science]}} $
  • [17] W.T. Sulaiman, On Hilbert’s integral inequality and its applications, Appl. Math., 2(3) (2011), 379-382. $\href{http://dx.doi.org/10.4236/am.2011.23045}{\mbox{[CrossRef]}} $
  • [18] Z.T. Xie, Z. Zeng and Y.F. Sun, A new Hilbert-type inequality with the homogeneous kernel of degree -2, Adv. Appl. Math. Sci., 12(7) (2013), 391-401. $\href{https://www.proquest.com/docview/1525957863?sourcetype=Scholarly%20Journals}{\mbox{[Web]}} $
  • [19] Z. Zhen, K.R.R. Gandhi, Z.T. Xie, A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral, Bull. Math. Sci. Appl., 3(1) (2014), 11-20. $\href{https://www.researchgate.net/publication/289644280_A_New_Hilbert-Type_Integral_Inequality_with_The_Homogeneous_Kernel_of_Real_Degree_Form_and_The_Integral_in_Whole_Plane#full-text}{\mbox{[Web]}} $
  • [20] D.M. Xin, A Hilbert-type integral inequality with the homogeneous kernel of zero degree, Math. Theory Appl., 30(2) (2010), 70-74.
  • [21] L.E. Azar, The connection between Hilbert and Hardy inequalities, J. Inequal. Appl., 2013 (2013) 1-10. $ \href{https://doi.org/10.1186/1029-242X-2013-452}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84897609434&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+connection+between+Hilbert+and+Hardy+inequalities%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000332038100004}{\mbox{[Web of Science]}}$
  • [22] T. Batbold and Y.Sawano, Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20(1) (2017), 263-283. $\href{http://dx.doi.org/10.7153/mia-20-20}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85014621297&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Sharp+bounds+for+m-linear+Hilbert-type+operators+on+the+weighted+Morrey+spaces%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000397414900018}{\mbox{[Web of Science]}} $
  • [23] V. Adiyasuren, T. Batbold and M. Krnic, Multiple Hilbert-type inequalities involving some differential operators, Banach J. Math. Anal., 10(2) (2016), 320-337. $ \href{https://doi.org/10.1215/17358787-3495561}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84963591518&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Multiple+Hilbert-type+inequalities+involving+some+differential+operators%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000374785700007}{\mbox{[Web of Science]}}$
  • [24] V. Adiyasuren, T. Batbold and M. Krnic, Hilbert-type inequalities involving differential operators, the best constants and applications, Math. Inequal. Appl., 18(1) (2015), 111-124. $\href{http://dx.doi.org/10.7153/mia-18-07}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84908628169&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Hilbert-type+inequalities+involving+differential+operators%2C+the+best+constants+and+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000355197100007}{\mbox{[Web of Science]}} $
  • [25] Q. Chen and B.C. Yang, A survey on the study of Hilbert-type inequalities, J. Inequal. Appl., 2015 (2015), 1-29. $ \href{https://doi.org/10.1186/s13660-015-0829-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84942810778&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+survey+on+the+study+of+Hilbert-type+inequalities%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000209862500003}{\mbox{[Web of Science]}}$
  • [26] C. Chesneau, Some four-parameter trigonometric generalizations of the Hilbert integral inequality, Asia Math., 8(2) (2024), 45-59. $\href{https://www.asiamath.org/article/vol8iss2/AM-2408-8210.pdf}{\mbox{[CrossRef]}} $
  • [27] T. Liu, R.A. Rahim and B.C. Yang, A reverse Hilbert-type integral inequality with the general nonhomogeneous kernel, Asia Pac. J. Math., 11(45) (2024), 1-14. $ \href{https://doi.org/10.28924/APJM/11-45}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85192349003&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+reverse+Hilbert-type+integral+inequality+with+the+general+nonhomogeneous+kernel%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}}$
  • [28] Y. Hong, M. Feng and B. He, Optimal matching parameters for the inverse Hilbert-type integral inequality with quasihomogeneous kernels and their applications, Ukr. Math. J., 76 (2024), 691-704. $\href{https://doi.org/10.1007/s11253-024-02348-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85204554543&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Optimal+matching+parameters+for+the+inverse+Hilbert-type+integral+inequality+with+quasihomogeneous+kernels+and+their+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} $
  • [29] C. Chesneau, Study of two three-parameter non-homogeneous variants of the Hilbert integral inequality, Lobachevskii J. Math., 45(10) (2024), 4819-4841. $\href{https://doi.org/10.1134/S1995080224605526}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85219198508&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Study+of+two+three-parameter+non-homogeneous+variants+of+the+Hilbert+integral+inequality%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001432579800009}{\mbox{[Web of Science]}} $
Year 2025, , 1 - 11, 31.03.2025
https://doi.org/10.33401/fujma.1560482

Abstract

References

  • [1] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, (1934). $ \href{https://mathematicalolympiads.wordpress.com/wp-content/uploads/2012/08/inequalities-hardy-littlewood-polya.pdf}{\mbox{[Web]}}$
  • [2] E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, (1961). $\href{https://doi.org/10.1007/978-3-642-64971-4}{\mbox{[CrossRef]}} $
  • [3] W. Walter, Differential and Integral Inequalities, Springer, Berlin, (1970). $\href{https://doi.org/10.1007/978-3-642-86405-6}{\mbox{[CrossRef]}} $
  • [4] D. Bainov and P.Simeonov, Integral Inequalities and Applications, Kluwer Academic, Dordrecht, (1992). $\href{https://doi.org/10.1007/978-94-015-8034-2}{\mbox{[CrossRef]}} $
  • [5] B.C. Yang, Hilbert-Type Integral Inequalities, Bentham Science Publishers, The United Arab Emirates, (2009). $\href{http://dx.doi.org/10.2174/97816080505501090101}{\mbox{[CrossRef]}} $
  • [6] S. Erden, M.Z. Sarıkaya, B. Gökkurt Özdemir and N. Uyanık, Wirtinger-type inequalities for Caputo fractional derivatives via Taylor’s formula, J. Inequal. Appl., 2024(1) (2024), 1-17. $ \href{https://doi.org/10.1186/s13660-024-03194-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85203059264&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Wirtinger-type+inequalities+for+Caputo+fractional+derivatives+via+Taylor%27s+formula%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001306454300001}{\mbox{[Web of Science]}}$
  • [7] B. Bayraktar, S.I. Butt, J.E. Napoles and F. Rabossi, Some new estimates for integral inequalities and their applications, Ukr. Math. J., 76(2) (2024), 169-191. $\href{https://doi.org/10.1007/s11253-024-02315-w}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85201432292&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+new+estimates+for+integral+inequalities+and+their+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001294610100005}{\mbox{[Web of Science]}} $
  • [8] W.M. Hasan, H.M. El-Owaidy, A.A. El-Deeb and H.M. Rezk, Generalizations of integral inequalities similar to Hardy inequality on time scales, J. Math. Computer Sci., 32(3) (2024), 241-256. $\href{http://dx.doi.org/10.22436/jmcs.032.03.05}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85175253012&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalizations+of+integral+inequalities+similar+to+Hardy+inequality+on+time+scales%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} $
  • [9] M. Bhattacharyya and S.S. Sana, A second order quadratic integral inequality associated with regular problems, Math. Model. Control, 4(1) (2024), 141-151. $\href{https://doi.org/10.3934/mmc.2024013}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85191452851&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+second+order+quadratic+integral+inequality+associated+with+regular+problems%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001202568500001}{\mbox{[Web of Science]}} $
  • [10] B.C. Yang, On Hilbert’s integral inequality, J. Math. Anal. Appl., 220(2) (1998), 778-785. $\href{https://doi.org/10.1006/jmaa.1997.5877}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0040682327&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Hilbert%27s+integral+inequality%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc&relpos=5}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000073041300026}{\mbox{[Web of Science]}} $
  • [11] B.C. Yang, On the norm of an integral operator and applications, J. Math. Anal. Appl., 321(1) (2006), 182-192. $ \href{https://doi.org/10.1016/j.jmaa.2005.07.071}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33646362258&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+norm+of+an+integral+operator+and+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000238807700016}{\mbox{[Web of Science]}}$
  • [12] J.S. Xu, Hardy-Hilbert’s inequalities with two parameters, Adv. Math., 36(2) (2007), 63-76.
  • [13] B.C. Yang, On the norm of a Hilbert’s type linear operator and applications, J. Math. Anal. Appl., 325(1) (2007), 529-541. $\href{https://doi.org/10.1016/j.jmaa.2006.02.006}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33750359681&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+norm+of+a+Hilbert%27s+type+linear+operator+and+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000242335300039}{\mbox{[Web of Science]}} $
  • [14] B.C. Yang, The Norm of Operator and Hilbert-Type Inequalities, Science Press, Beijing, (2009).
  • [15] B.C. Yang, Hilbert-type integral inequality with non-homogeneous kernel, J. Shanghai Univ., 17(5) (2011), 603-605. $\href{https://doi.org/10.3969/j.issn.1007-2861.2011.05.006}{\mbox{[CrossRef]}} $
  • [16] P. Xiuying and G.Mingzhe, On Hilbert’s integral inequality and its applications, Math. Inequal. Appl., 14(2) (2011), 271-279. $\href{https://doi.org/10.7153/mia-14-22}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-79952095348&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Hilbert%27s+integral+inequality+and+its+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000291112700002}{\mbox{[Web of Science]}} $
  • [17] W.T. Sulaiman, On Hilbert’s integral inequality and its applications, Appl. Math., 2(3) (2011), 379-382. $\href{http://dx.doi.org/10.4236/am.2011.23045}{\mbox{[CrossRef]}} $
  • [18] Z.T. Xie, Z. Zeng and Y.F. Sun, A new Hilbert-type inequality with the homogeneous kernel of degree -2, Adv. Appl. Math. Sci., 12(7) (2013), 391-401. $\href{https://www.proquest.com/docview/1525957863?sourcetype=Scholarly%20Journals}{\mbox{[Web]}} $
  • [19] Z. Zhen, K.R.R. Gandhi, Z.T. Xie, A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral, Bull. Math. Sci. Appl., 3(1) (2014), 11-20. $\href{https://www.researchgate.net/publication/289644280_A_New_Hilbert-Type_Integral_Inequality_with_The_Homogeneous_Kernel_of_Real_Degree_Form_and_The_Integral_in_Whole_Plane#full-text}{\mbox{[Web]}} $
  • [20] D.M. Xin, A Hilbert-type integral inequality with the homogeneous kernel of zero degree, Math. Theory Appl., 30(2) (2010), 70-74.
  • [21] L.E. Azar, The connection between Hilbert and Hardy inequalities, J. Inequal. Appl., 2013 (2013) 1-10. $ \href{https://doi.org/10.1186/1029-242X-2013-452}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84897609434&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+connection+between+Hilbert+and+Hardy+inequalities%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000332038100004}{\mbox{[Web of Science]}}$
  • [22] T. Batbold and Y.Sawano, Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20(1) (2017), 263-283. $\href{http://dx.doi.org/10.7153/mia-20-20}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85014621297&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Sharp+bounds+for+m-linear+Hilbert-type+operators+on+the+weighted+Morrey+spaces%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000397414900018}{\mbox{[Web of Science]}} $
  • [23] V. Adiyasuren, T. Batbold and M. Krnic, Multiple Hilbert-type inequalities involving some differential operators, Banach J. Math. Anal., 10(2) (2016), 320-337. $ \href{https://doi.org/10.1215/17358787-3495561}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84963591518&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Multiple+Hilbert-type+inequalities+involving+some+differential+operators%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000374785700007}{\mbox{[Web of Science]}}$
  • [24] V. Adiyasuren, T. Batbold and M. Krnic, Hilbert-type inequalities involving differential operators, the best constants and applications, Math. Inequal. Appl., 18(1) (2015), 111-124. $\href{http://dx.doi.org/10.7153/mia-18-07}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84908628169&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Hilbert-type+inequalities+involving+differential+operators%2C+the+best+constants+and+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000355197100007}{\mbox{[Web of Science]}} $
  • [25] Q. Chen and B.C. Yang, A survey on the study of Hilbert-type inequalities, J. Inequal. Appl., 2015 (2015), 1-29. $ \href{https://doi.org/10.1186/s13660-015-0829-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84942810778&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+survey+on+the+study+of+Hilbert-type+inequalities%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000209862500003}{\mbox{[Web of Science]}}$
  • [26] C. Chesneau, Some four-parameter trigonometric generalizations of the Hilbert integral inequality, Asia Math., 8(2) (2024), 45-59. $\href{https://www.asiamath.org/article/vol8iss2/AM-2408-8210.pdf}{\mbox{[CrossRef]}} $
  • [27] T. Liu, R.A. Rahim and B.C. Yang, A reverse Hilbert-type integral inequality with the general nonhomogeneous kernel, Asia Pac. J. Math., 11(45) (2024), 1-14. $ \href{https://doi.org/10.28924/APJM/11-45}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85192349003&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+reverse+Hilbert-type+integral+inequality+with+the+general+nonhomogeneous+kernel%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}}$
  • [28] Y. Hong, M. Feng and B. He, Optimal matching parameters for the inverse Hilbert-type integral inequality with quasihomogeneous kernels and their applications, Ukr. Math. J., 76 (2024), 691-704. $\href{https://doi.org/10.1007/s11253-024-02348-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85204554543&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Optimal+matching+parameters+for+the+inverse+Hilbert-type+integral+inequality+with+quasihomogeneous+kernels+and+their+applications%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} $
  • [29] C. Chesneau, Study of two three-parameter non-homogeneous variants of the Hilbert integral inequality, Lobachevskii J. Math., 45(10) (2024), 4819-4841. $\href{https://doi.org/10.1134/S1995080224605526}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85219198508&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Study+of+two+three-parameter+non-homogeneous+variants+of+the+Hilbert+integral+inequality%22%29&sessionSearchId=2b3b881954449b5ab9e76e44896e2fdc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001432579800009}{\mbox{[Web of Science]}} $
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Christophe Chesneau 0000-0002-1522-9292

Early Pub Date March 28, 2025
Publication Date March 31, 2025
Submission Date October 3, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2025

Cite

APA Chesneau, C. (2025). Two New General Integral Results Related to the Hilbert Integral Inequality. Fundamental Journal of Mathematics and Applications, 8(1), 1-11. https://doi.org/10.33401/fujma.1560482
AMA Chesneau C. Two New General Integral Results Related to the Hilbert Integral Inequality. Fundam. J. Math. Appl. March 2025;8(1):1-11. doi:10.33401/fujma.1560482
Chicago Chesneau, Christophe. “Two New General Integral Results Related to the Hilbert Integral Inequality”. Fundamental Journal of Mathematics and Applications 8, no. 1 (March 2025): 1-11. https://doi.org/10.33401/fujma.1560482.
EndNote Chesneau C (March 1, 2025) Two New General Integral Results Related to the Hilbert Integral Inequality. Fundamental Journal of Mathematics and Applications 8 1 1–11.
IEEE C. Chesneau, “Two New General Integral Results Related to the Hilbert Integral Inequality”, Fundam. J. Math. Appl., vol. 8, no. 1, pp. 1–11, 2025, doi: 10.33401/fujma.1560482.
ISNAD Chesneau, Christophe. “Two New General Integral Results Related to the Hilbert Integral Inequality”. Fundamental Journal of Mathematics and Applications 8/1 (March 2025), 1-11. https://doi.org/10.33401/fujma.1560482.
JAMA Chesneau C. Two New General Integral Results Related to the Hilbert Integral Inequality. Fundam. J. Math. Appl. 2025;8:1–11.
MLA Chesneau, Christophe. “Two New General Integral Results Related to the Hilbert Integral Inequality”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 1, 2025, pp. 1-11, doi:10.33401/fujma.1560482.
Vancouver Chesneau C. Two New General Integral Results Related to the Hilbert Integral Inequality. Fundam. J. Math. Appl. 2025;8(1):1-11.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a