Research Article
BibTex RIS Cite

Initial value problems spreadsheet solver using VBA for engineering education

Year 2018, , 88 - 101, 30.06.2018
https://doi.org/10.33401/fujma.401219

Abstract

Spreadsheet solver using VBA programming has been designed for solving initial value problems (IVPs), analytically and numerically by all Runge-Kutta (RK) methods including also fifth order with calculation of true percent relative error for corresponding RK method. This solver is user-friendly especially for beginner users of Excel and VBA.

References

  • [1] S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, McGraw Hill, 2006.
  • [2] D.G. Lilley, Numerical Methods Using Excel/VBA for Engineers, Cambridge University Press, 2010.
  • [3] E.D. Laughbaum, K. Seidel, Business Math Excel Applications, Prentice Hall, 2008.
  • [4] R.W. Larsen, Engineering with Excel, Pearson Prentice Hall, 2009.
  • [5] D.M. Bourq, Excel Scientific and Engineering, Cookbook. O’Reilly, 2006.
  • [6] E. J. Billo, Excel for Scientists and Engineers, Wiley –Interscience, 2007.
  • [7] S.C. Chapra, Power Programming with VBA/Excel, Prentice Hall, Upper Saddle River, 2003.
  • [8] S.L. Kek, K.G. Tay, Design of spreadsheet solver for polynomial interpolation, National Seminar on Science and Technology (PKPST 2009), 69-73 (2009).
  • [9] K.G. Tay, S.L. Kek, R. Abdul-Kahar, A bivariate approximation spreadsheet calculator by Lagrange interpolation, Spreadsheets in Education (eJSiE), 7, 1-8 (2014).
  • [10] S.L. Kek, K.G. Tay, Solver for system of linear equations, Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008), 605-615 (2008).
  • [11] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Solving non-linear systems by Newton’s method using spreadsheet Excel, Proceeding of the 3rd International Conference on Science and Mathematics Education (CoSMED 2009), 452-456 (2009).
  • [12] K.G. Tay, S.L. Kek, Approximating the dominant eigenvalue using Power method through spreedsheet Excel, Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008), 599-604 (2008).
  • [13] K.G. Tay, S.L. Kek, Approximating the Smallest Eigenvalue Using Inverse Method Through Spreadsheet Excel, Proceeding of the 17th National Symposium on Mathematical Science (SKSM 2009), 653-658 (2009).
  • [14] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Improved Richardson’s Eextrapolation spreadsheet calculator for numerical differentiation, AIP Conference Proceedings, 1605, 740-743 (2014).
  • [15] K.G. Tay, S.L. Kek, R. Abdul-Kahar, M.A. Azlan, M.F. Lee, A Richardson’s extrapolation spreadsheet calculator for numerical differentiation, Spreadsheets in Education (eJSiE), 6, 1-5 (2013).
  • [16] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Numerical differentiation spreadsheet calculator, Proceedings of the National Symposium on Application of Science Mathematics 2008 (SKASM 2013), 111-120 (2013).
  • [17] C.K. Ghaddar, Unlocking the spreadsheet utility for calculus: A pure worksheet solver for differential equations, Spreadsheets in Education (eJSiE), 9, 1-16 (2016).
  • [18] K.G. Tay, S.L. Kek, R. Abdul-Kahar, A spreadsheet solution of a system of initial value problems using the fourth-order Runge-Kutta method, Spreadsheets in Education (eJSiE), 5, 1-10, (2012).
  • [19] K.G. Tay, S.L. Kek, Fourth Order Runge-Kutta Method Using Spreadsheet Excel. Proceedings of the 4th International Conference on Research and Education in Mathematics (ICREM4). 666-672 (2009).
  • [20] K.G. Tay, T.H. Cheong, M.F. Lee, S.L. Kek, R. Abdul-Kahar, A fourth-order Runge-Kutta (RK4) spreadsheet calculator for solving a system of two first-order initial value problems using Visual Basic (VBA) Programming, Spreadsheets in Education (eJSiE), 8, 1-9 (2015).
  • [21] K.G. Tay, S.L. Kek, T.H. Cheong, R. Abdul-Kahar, M. F. Lee, The fourth order Runge-Kutta spreadsheet calculator using VBA programming for initial value problems, Procedia-Social and Behavioral Sciences, 204, 231-239 (2015).
Year 2018, , 88 - 101, 30.06.2018
https://doi.org/10.33401/fujma.401219

Abstract

References

  • [1] S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, McGraw Hill, 2006.
  • [2] D.G. Lilley, Numerical Methods Using Excel/VBA for Engineers, Cambridge University Press, 2010.
  • [3] E.D. Laughbaum, K. Seidel, Business Math Excel Applications, Prentice Hall, 2008.
  • [4] R.W. Larsen, Engineering with Excel, Pearson Prentice Hall, 2009.
  • [5] D.M. Bourq, Excel Scientific and Engineering, Cookbook. O’Reilly, 2006.
  • [6] E. J. Billo, Excel for Scientists and Engineers, Wiley –Interscience, 2007.
  • [7] S.C. Chapra, Power Programming with VBA/Excel, Prentice Hall, Upper Saddle River, 2003.
  • [8] S.L. Kek, K.G. Tay, Design of spreadsheet solver for polynomial interpolation, National Seminar on Science and Technology (PKPST 2009), 69-73 (2009).
  • [9] K.G. Tay, S.L. Kek, R. Abdul-Kahar, A bivariate approximation spreadsheet calculator by Lagrange interpolation, Spreadsheets in Education (eJSiE), 7, 1-8 (2014).
  • [10] S.L. Kek, K.G. Tay, Solver for system of linear equations, Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008), 605-615 (2008).
  • [11] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Solving non-linear systems by Newton’s method using spreadsheet Excel, Proceeding of the 3rd International Conference on Science and Mathematics Education (CoSMED 2009), 452-456 (2009).
  • [12] K.G. Tay, S.L. Kek, Approximating the dominant eigenvalue using Power method through spreedsheet Excel, Proceeding of the National Symposium on Application of Science Mathematics 2008 (SKASM 2008), 599-604 (2008).
  • [13] K.G. Tay, S.L. Kek, Approximating the Smallest Eigenvalue Using Inverse Method Through Spreadsheet Excel, Proceeding of the 17th National Symposium on Mathematical Science (SKSM 2009), 653-658 (2009).
  • [14] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Improved Richardson’s Eextrapolation spreadsheet calculator for numerical differentiation, AIP Conference Proceedings, 1605, 740-743 (2014).
  • [15] K.G. Tay, S.L. Kek, R. Abdul-Kahar, M.A. Azlan, M.F. Lee, A Richardson’s extrapolation spreadsheet calculator for numerical differentiation, Spreadsheets in Education (eJSiE), 6, 1-5 (2013).
  • [16] K.G. Tay, S.L. Kek, R. Abdul-Kahar, Numerical differentiation spreadsheet calculator, Proceedings of the National Symposium on Application of Science Mathematics 2008 (SKASM 2013), 111-120 (2013).
  • [17] C.K. Ghaddar, Unlocking the spreadsheet utility for calculus: A pure worksheet solver for differential equations, Spreadsheets in Education (eJSiE), 9, 1-16 (2016).
  • [18] K.G. Tay, S.L. Kek, R. Abdul-Kahar, A spreadsheet solution of a system of initial value problems using the fourth-order Runge-Kutta method, Spreadsheets in Education (eJSiE), 5, 1-10, (2012).
  • [19] K.G. Tay, S.L. Kek, Fourth Order Runge-Kutta Method Using Spreadsheet Excel. Proceedings of the 4th International Conference on Research and Education in Mathematics (ICREM4). 666-672 (2009).
  • [20] K.G. Tay, T.H. Cheong, M.F. Lee, S.L. Kek, R. Abdul-Kahar, A fourth-order Runge-Kutta (RK4) spreadsheet calculator for solving a system of two first-order initial value problems using Visual Basic (VBA) Programming, Spreadsheets in Education (eJSiE), 8, 1-9 (2015).
  • [21] K.G. Tay, S.L. Kek, T.H. Cheong, R. Abdul-Kahar, M. F. Lee, The fourth order Runge-Kutta spreadsheet calculator using VBA programming for initial value problems, Procedia-Social and Behavioral Sciences, 204, 231-239 (2015).
There are 21 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Çiğdem Dinçkal

Publication Date June 30, 2018
Submission Date March 4, 2018
Acceptance Date April 22, 2018
Published in Issue Year 2018

Cite

APA Dinçkal, Ç. (2018). Initial value problems spreadsheet solver using VBA for engineering education. Fundamental Journal of Mathematics and Applications, 1(1), 88-101. https://doi.org/10.33401/fujma.401219
AMA Dinçkal Ç. Initial value problems spreadsheet solver using VBA for engineering education. Fundam. J. Math. Appl. June 2018;1(1):88-101. doi:10.33401/fujma.401219
Chicago Dinçkal, Çiğdem. “Initial Value Problems Spreadsheet Solver Using VBA for Engineering Education”. Fundamental Journal of Mathematics and Applications 1, no. 1 (June 2018): 88-101. https://doi.org/10.33401/fujma.401219.
EndNote Dinçkal Ç (June 1, 2018) Initial value problems spreadsheet solver using VBA for engineering education. Fundamental Journal of Mathematics and Applications 1 1 88–101.
IEEE Ç. Dinçkal, “Initial value problems spreadsheet solver using VBA for engineering education”, Fundam. J. Math. Appl., vol. 1, no. 1, pp. 88–101, 2018, doi: 10.33401/fujma.401219.
ISNAD Dinçkal, Çiğdem. “Initial Value Problems Spreadsheet Solver Using VBA for Engineering Education”. Fundamental Journal of Mathematics and Applications 1/1 (June 2018), 88-101. https://doi.org/10.33401/fujma.401219.
JAMA Dinçkal Ç. Initial value problems spreadsheet solver using VBA for engineering education. Fundam. J. Math. Appl. 2018;1:88–101.
MLA Dinçkal, Çiğdem. “Initial Value Problems Spreadsheet Solver Using VBA for Engineering Education”. Fundamental Journal of Mathematics and Applications, vol. 1, no. 1, 2018, pp. 88-101, doi:10.33401/fujma.401219.
Vancouver Dinçkal Ç. Initial value problems spreadsheet solver using VBA for engineering education. Fundam. J. Math. Appl. 2018;1(1):88-101.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a