Year 2019,
, 156 - 161, 20.12.2019
Renukadevi V
,
Ravindran Thangamariappan
References
- [1] R. C. Haworth, R. A. McCoy, Baire spaces, Dissertationes Math., 141 (1977), 1-73.
- [2] R. A. McCoy, A Baire space extension, Proc. Amer. Math. Soc., 33 (1972), 199-202.
- [3] J. C. Oxtoby, Cartesian product of Baire spaces, Fund. Math., 49(1961), 157-166.
- [4] A. K. Mishra, A topological view of P-spaces, Gen. Topology Appl., 2 (1972), 349-362.
- [5] N. Bourbaki, General Topology, Addison Wesley Publishing Company, Massachusets, 1966.
- [6] H. Blumberg, New Properties of all real functions, Trans. Amer. Math. Soc., 24 (1922), 113-128.
- [7] J. C. Bradforil, C. Goffman, Metric spaces in which Blumberg0s theorem holds, Proc. Amer. Math. Soc., 11 (1960), 667-670.
- [8] D. Gauld, Z. Piotrowski, On Volterra spaces, Far East J. Math. Sci., 1 (1993), 209-214.
- [9] D. Gauld, S. Greenwood, Z. Piotrowski, On Volterra spaces II, Ann. New York Acad. Sci., 806 (1996), 169-173.
- [10] P. E. Cohen, Products of Baire spaces, Proc. Amer. Math. Soc., 55 (1976), 119-124.
- [11] W. Fleissner, K. Kunen, Bairely Baire Spaces, Fund. Math., 101 (1978), 229-240.
- [12] D. Gauld, S. Greenwood, Z. Piotrowski, On Volterra spaces III:Topological Operations, Proceedings of the 1998 Topology and Dynamics Conference(Fairfax, VA), Topology Proc., 23 (1998), 167-182.
- [13] S. Spadaro, P-spaces and the Volterra property, Bull. Aust. Math. Soc., 87(2) (2013), 339-345.
- [14] W. B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire, Proc. Amer. Math. Soc., 134 (2006), 2161-2163.
- [15] J. C. Oxtoby, The Banach-Mazur game and Banach category theorem Contributions to the Theory Games, Ann. Math. Studies, 89 (1957), 157-163.
- [16] M. R. Krom, Cartesian product of metric Baire spaces, Proc. Amer. Math. Soc., 42 (1974), 588-594.
- [17] J. S. Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc., 87 (1983), 499-504.
Year 2019,
, 156 - 161, 20.12.2019
Renukadevi V
,
Ravindran Thangamariappan
Abstract
We study directed Baire spaces and their relevant topological properties. A characterization of directed Baire spaces is given using point finite family of $G_\delta-$sets. Further, we prove that the product of directed Baire space with a metric hereditarily directed Baire space is a downward-directed Baire space. Finally, it is established that the product of a Baire space with a hereditarily metric Volterra space is again a Volterra space.
References
- [1] R. C. Haworth, R. A. McCoy, Baire spaces, Dissertationes Math., 141 (1977), 1-73.
- [2] R. A. McCoy, A Baire space extension, Proc. Amer. Math. Soc., 33 (1972), 199-202.
- [3] J. C. Oxtoby, Cartesian product of Baire spaces, Fund. Math., 49(1961), 157-166.
- [4] A. K. Mishra, A topological view of P-spaces, Gen. Topology Appl., 2 (1972), 349-362.
- [5] N. Bourbaki, General Topology, Addison Wesley Publishing Company, Massachusets, 1966.
- [6] H. Blumberg, New Properties of all real functions, Trans. Amer. Math. Soc., 24 (1922), 113-128.
- [7] J. C. Bradforil, C. Goffman, Metric spaces in which Blumberg0s theorem holds, Proc. Amer. Math. Soc., 11 (1960), 667-670.
- [8] D. Gauld, Z. Piotrowski, On Volterra spaces, Far East J. Math. Sci., 1 (1993), 209-214.
- [9] D. Gauld, S. Greenwood, Z. Piotrowski, On Volterra spaces II, Ann. New York Acad. Sci., 806 (1996), 169-173.
- [10] P. E. Cohen, Products of Baire spaces, Proc. Amer. Math. Soc., 55 (1976), 119-124.
- [11] W. Fleissner, K. Kunen, Bairely Baire Spaces, Fund. Math., 101 (1978), 229-240.
- [12] D. Gauld, S. Greenwood, Z. Piotrowski, On Volterra spaces III:Topological Operations, Proceedings of the 1998 Topology and Dynamics Conference(Fairfax, VA), Topology Proc., 23 (1998), 167-182.
- [13] S. Spadaro, P-spaces and the Volterra property, Bull. Aust. Math. Soc., 87(2) (2013), 339-345.
- [14] W. B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire, Proc. Amer. Math. Soc., 134 (2006), 2161-2163.
- [15] J. C. Oxtoby, The Banach-Mazur game and Banach category theorem Contributions to the Theory Games, Ann. Math. Studies, 89 (1957), 157-163.
- [16] M. R. Krom, Cartesian product of metric Baire spaces, Proc. Amer. Math. Soc., 42 (1974), 588-594.
- [17] J. S. Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc., 87 (1983), 499-504.