Research Article
BibTex RIS Cite

Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers' Differential Equation

Year 2019, , 139 - 147, 20.12.2019
https://doi.org/10.33401/fujma.598107

Abstract

Many physical phenomena in nature can be described or modeled via a differential equation or a system of differential equations. In this work, we restrict our attention to research a solution of fractional nonlinear generalized Burgers' differential equations.  Thereby we find some exact solutions for the nonlinear generalized Burgers' differential equation with a fractional derivative, which has domain as $\mathbb{R}^2\times\mathbb{R}^+$. Here we use the Lie groups method. After applying the Lie groups to the boundary value problem we get the partial differential equations on the domain $\mathbb{R}^2$ with reduced boundary and initial conditions. Also, we find conservation laws for the nonlinear generalized Burgers' differential equation.

Supporting Institution

Istanbul Commerce University

Project Number

22-2018/34

References

  • [1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095–1097.
  • [2] R. Hirota, J. Satsuma, A variety of nonlinear network equations generated from the B¨acklund transformation for the Tota lattice, Suppl. Prog. Theor. Phys., 59 (1976), 64–100.
  • [3] G. W. Bluman, S. C. Anco, Symmetry and integration methods for differential equations, 154 Appl. Math. Sci., Springer-Verlag, New York, 2002.
  • [4] P. Olver, Applications of Lie Groups to Differential Equations, Springer Science, Germany, 2012.
  • [5] P. Clarkson, M. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30(10) (1989), 2201–2213.
  • [6] P. Clarkson, New similarity reductions for the modified Boussinesq equation, J. Phys. A: Gen., 22 (1989), 2355–2367.
  • [7] R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestn. USATU, 9 (2007), 125–135.
  • [8] C. M. Khalique, K. R. Adem, Exact solutions of the (2+1)-dimensional Zakharov-Kuznetsov modified equal width equation using Lie group analysis, Math. Comp. Modelling, 54 (2011), 184–189.
  • [9] S. S. Ray, Invariant analysis and conservation laws for the time fractional (2+1)-dimensional Zakharov􀀀Kuznetsov modified equal width equation using Lie group analysis, Comput. Math. Appl., 76 (2018), 2110–2118
  • [10] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives, Rheol. Acta, 45(5) (2006), 765–771.
  • [11] C. Li, D. Qian, Y. Q. Chen, On Riemann–Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., 15 (2011), Article ID 562494.
  • [12] P. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide, Cambridge University press., UK, 2000.
  • [13] G. Iskandarova, D. Kaya, Symmetry solution on fractional equation, J. Optim. Control: Theories Appl., 7(3) (2017) 255–259.
  • [14] D. Kaya, G. Iskandarova, Lie group analysis for a time-fractional nonlinear generalized KdV differential equation, Turk. J. Math., 43(3) (2019), 1263-1275.
  • [15] N. M. Ivanova, C. Sophocleous, R. Tracin, Lie group analysis of two-dimensional variable􀀀coefficient Burgers equation, Z. Angew. Math. Phys., 61(5) (2010), 793􀀀809.
  • [16] M. Abd-el-Malek, A. Amin, Lie group method for solving the generalized Burgers’, Burgers’􀀀KdV and KdV equations with time􀀀dependent Kiryakiable coefficients, J. Symmetry, 7 (2015), 1816–1830.
  • [17] A. Yokus, M. Yavuz, Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation, Discrete Contin. Dyn. Syst., (2020), (in press).
  • [18] R. Sinuvasan, K. M. Tamizhmani, P. G. L. Leach, Algebraic resolution of the Burgers equation with a forcing term, Pramana – J. Phys. 88(5) (2017), 74 pages.
  • [19] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1999.
  • [20] N. Ibragimov, Lie group analysis classical heritage, ALGA Publications Blekinge Institute of Technology Karlskrona, Sweden, 2004.
  • [21] N. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, 1 CRC Press, Boca Raton, 1994.
  • [22] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley–Interscience, New York, 1993.
  • [23] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • [24] N. Ibragimov, A new conservation theorem, J Math. Anal. Appl., 333(1) (2007), 311–328.
  • [25] N. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys A: Math. Gen., 44(43) (2011), 4109–4112.
  • [26] Z. Xiao, L. Wei, Symmetry analysis conservation laws of a time fractional fifth-order Sawada–Kotera equation, J. Appl. Anal. Comput., 7 (2017), 1275–1284.
  • [27] S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 80(1-2) (2015), 791–802.
  • [28] R. K. Gazizov, N. H. Ibragimov, S. Y. Lukashchuk, Conlinear self-adjointness, conservation laws and exat solution of fractional Kompaneets equations, Commun. Nonlinear SCI, 23(1) (2015), 153–163.
  • [29] G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Berlin etc., Springer-Verlag, 1989.
  • [30] R. Cherniha, S. Kovalenko, Lie symmetry of a class of nonlinear boundary value problems with free boundaries, Banach Center Publ., 93 (2011), 73–82.
  • [31] R. Cherniha, S. Kovalenko, Lie symmetries of nonlinear boundary value problems, Commun. Nonlinear SCI, 17 (2012), 71–84.
Year 2019, , 139 - 147, 20.12.2019
https://doi.org/10.33401/fujma.598107

Abstract

Project Number

22-2018/34

References

  • [1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095–1097.
  • [2] R. Hirota, J. Satsuma, A variety of nonlinear network equations generated from the B¨acklund transformation for the Tota lattice, Suppl. Prog. Theor. Phys., 59 (1976), 64–100.
  • [3] G. W. Bluman, S. C. Anco, Symmetry and integration methods for differential equations, 154 Appl. Math. Sci., Springer-Verlag, New York, 2002.
  • [4] P. Olver, Applications of Lie Groups to Differential Equations, Springer Science, Germany, 2012.
  • [5] P. Clarkson, M. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30(10) (1989), 2201–2213.
  • [6] P. Clarkson, New similarity reductions for the modified Boussinesq equation, J. Phys. A: Gen., 22 (1989), 2355–2367.
  • [7] R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestn. USATU, 9 (2007), 125–135.
  • [8] C. M. Khalique, K. R. Adem, Exact solutions of the (2+1)-dimensional Zakharov-Kuznetsov modified equal width equation using Lie group analysis, Math. Comp. Modelling, 54 (2011), 184–189.
  • [9] S. S. Ray, Invariant analysis and conservation laws for the time fractional (2+1)-dimensional Zakharov􀀀Kuznetsov modified equal width equation using Lie group analysis, Comput. Math. Appl., 76 (2018), 2110–2118
  • [10] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives, Rheol. Acta, 45(5) (2006), 765–771.
  • [11] C. Li, D. Qian, Y. Q. Chen, On Riemann–Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., 15 (2011), Article ID 562494.
  • [12] P. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide, Cambridge University press., UK, 2000.
  • [13] G. Iskandarova, D. Kaya, Symmetry solution on fractional equation, J. Optim. Control: Theories Appl., 7(3) (2017) 255–259.
  • [14] D. Kaya, G. Iskandarova, Lie group analysis for a time-fractional nonlinear generalized KdV differential equation, Turk. J. Math., 43(3) (2019), 1263-1275.
  • [15] N. M. Ivanova, C. Sophocleous, R. Tracin, Lie group analysis of two-dimensional variable􀀀coefficient Burgers equation, Z. Angew. Math. Phys., 61(5) (2010), 793􀀀809.
  • [16] M. Abd-el-Malek, A. Amin, Lie group method for solving the generalized Burgers’, Burgers’􀀀KdV and KdV equations with time􀀀dependent Kiryakiable coefficients, J. Symmetry, 7 (2015), 1816–1830.
  • [17] A. Yokus, M. Yavuz, Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation, Discrete Contin. Dyn. Syst., (2020), (in press).
  • [18] R. Sinuvasan, K. M. Tamizhmani, P. G. L. Leach, Algebraic resolution of the Burgers equation with a forcing term, Pramana – J. Phys. 88(5) (2017), 74 pages.
  • [19] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1999.
  • [20] N. Ibragimov, Lie group analysis classical heritage, ALGA Publications Blekinge Institute of Technology Karlskrona, Sweden, 2004.
  • [21] N. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, 1 CRC Press, Boca Raton, 1994.
  • [22] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley–Interscience, New York, 1993.
  • [23] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • [24] N. Ibragimov, A new conservation theorem, J Math. Anal. Appl., 333(1) (2007), 311–328.
  • [25] N. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys A: Math. Gen., 44(43) (2011), 4109–4112.
  • [26] Z. Xiao, L. Wei, Symmetry analysis conservation laws of a time fractional fifth-order Sawada–Kotera equation, J. Appl. Anal. Comput., 7 (2017), 1275–1284.
  • [27] S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 80(1-2) (2015), 791–802.
  • [28] R. K. Gazizov, N. H. Ibragimov, S. Y. Lukashchuk, Conlinear self-adjointness, conservation laws and exat solution of fractional Kompaneets equations, Commun. Nonlinear SCI, 23(1) (2015), 153–163.
  • [29] G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Berlin etc., Springer-Verlag, 1989.
  • [30] R. Cherniha, S. Kovalenko, Lie symmetry of a class of nonlinear boundary value problems with free boundaries, Banach Center Publ., 93 (2011), 73–82.
  • [31] R. Cherniha, S. Kovalenko, Lie symmetries of nonlinear boundary value problems, Commun. Nonlinear SCI, 17 (2012), 71–84.
There are 31 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Articles
Authors

Gulistan Iskenderoglu 0000-0001-7322-1339

Dogan Kaya This is me 0000-0002-3420-7718

Project Number 22-2018/34
Publication Date December 20, 2019
Submission Date July 29, 2019
Acceptance Date December 10, 2019
Published in Issue Year 2019

Cite

APA Iskenderoglu, G., & Kaya, D. (2019). Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation. Fundamental Journal of Mathematics and Applications, 2(2), 139-147. https://doi.org/10.33401/fujma.598107
AMA Iskenderoglu G, Kaya D. Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation. Fundam. J. Math. Appl. December 2019;2(2):139-147. doi:10.33401/fujma.598107
Chicago Iskenderoglu, Gulistan, and Dogan Kaya. “Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation”. Fundamental Journal of Mathematics and Applications 2, no. 2 (December 2019): 139-47. https://doi.org/10.33401/fujma.598107.
EndNote Iskenderoglu G, Kaya D (December 1, 2019) Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation. Fundamental Journal of Mathematics and Applications 2 2 139–147.
IEEE G. Iskenderoglu and D. Kaya, “Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation”, Fundam. J. Math. Appl., vol. 2, no. 2, pp. 139–147, 2019, doi: 10.33401/fujma.598107.
ISNAD Iskenderoglu, Gulistan - Kaya, Dogan. “Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation”. Fundamental Journal of Mathematics and Applications 2/2 (December 2019), 139-147. https://doi.org/10.33401/fujma.598107.
JAMA Iskenderoglu G, Kaya D. Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation. Fundam. J. Math. Appl. 2019;2:139–147.
MLA Iskenderoglu, Gulistan and Dogan Kaya. “Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 139-47, doi:10.33401/fujma.598107.
Vancouver Iskenderoglu G, Kaya D. Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation. Fundam. J. Math. Appl. 2019;2(2):139-47.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a