Research Article
BibTex RIS Cite
Year 2020, , 33 - 44, 10.06.2020
https://doi.org/10.33401/fujma.645321

Abstract

References

  • [1] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.
  • [2] T. Roubiček, Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter, Berlin, 1997.
  • [3] H. O. Fattorini, Infinite Dimensional Optimization Theory and Optimal Control, Cambridge Univ. Press, Cambridge, 1999.
  • [4] J. Warga, Steepest descent with relaxed controls, SIAM J. Control Optim., 15 (1977), 674-682.
  • [5] I. Chryssoverghi, A. Bacopoulos, B. Kokkinis, J. Coletsos, Mixed Frank-Wolfe penalty method with applications to nonconvex optimal control problems, J. Optimiz. Theory App., 94 (1997) 311-334.
  • [6] I. Chryssoverghi, A. Bacopoulos, Approximation of relaxed nonlinear parabolic optimal control problems, J. Optimiz. Theory App., 77 (1993) 31-50.
  • [7] T. Roubiček, A convergent computational method for constrained optimal relaxed control problems, J. Optimiz. Theory App., 69 (1991) 589-603.
  • [8] V. Azhmyakov, W. Schmidt, Approximations of relaxed optimal control problems, J. Optimiz. Theory App., 130 (2006) 61-77.
  • [9] N. Arada, J. P. Raymond, State-constrained relaxed problems for semilinear elliptic equations, J. Math. Anal. Appl., 223 (1998) 248-271.
  • [10] N. Arada, J. P. Raymond, Approximation of optimal control problems with state constraints, Numer. Funct. Anal. and Optimiz., 21 (2000) 601-621.
  • [11] E. Casas, The relaxation theory applied to optimal control problems of semilinear elliptic equations, J. Dolezal, J. Fidler (editors), System Modelling and Optimization, Chapman & Hall, London, 1996, pp. 187-194.
  • [12] I. Chryssoverghi, J. Coletsos, B. Kokkinis, Discrete relaxed method for semilinear parabolic optimal control problems, Control Cybernet., 28 (1999) 157-176.
  • [13] S. Luan, Nonexistence and existence of an optimal control problem governed by a class of semilinear elliptic equations, J. Optimiz. Theory App., 158 (2013) 1-10.
  • [14] I. Chryssoverghi, J. Coletsos, B. Kokkinis, Classical and relaxed optimization methods for nonlinear parabolic optimal control problems I. Lirkov, S. Margenov and J. Wasniewski (editors), Large-scale scientific computing, Springer-Verlag, Berlin, 2010, pp. 247-255.
  • [15] J. L. Lions, Quelques M´ethodes de R´esolution des Prob`emes aux Limites Non Lin´eaires, Dunod Gauthier-Villars, Paris, 1969.
  • [16] R. Temam, Navier-Stokes Equations, North-Holland, New York, 1977.
  • [17] S. Treanta, On signomial constrained optimal control problems, Commun. Adv. Math. Sci., 2 (2019), 55-59.

An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems

Year 2020, , 33 - 44, 10.06.2020
https://doi.org/10.33401/fujma.645321

Abstract

This paper addresses optimal control problems governed by semilinear parabolic partial differential equations, subject to control constraints and state constraints of integral type. Since such problems may not have classical solutions, a relaxed optimal control problem is considered. The relaxed control problem is discretized by using a finite element method and the behavior in the limit of discrete optimality, admissibility and extremality properties is studied. A conditional descent method with penalties applied to the discrete problems is proposed. It is shown that the accumulation points of sequences produced by this method are admissible and extremal for the discrete problem. Finally, numerical examples are given.

References

  • [1] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.
  • [2] T. Roubiček, Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter, Berlin, 1997.
  • [3] H. O. Fattorini, Infinite Dimensional Optimization Theory and Optimal Control, Cambridge Univ. Press, Cambridge, 1999.
  • [4] J. Warga, Steepest descent with relaxed controls, SIAM J. Control Optim., 15 (1977), 674-682.
  • [5] I. Chryssoverghi, A. Bacopoulos, B. Kokkinis, J. Coletsos, Mixed Frank-Wolfe penalty method with applications to nonconvex optimal control problems, J. Optimiz. Theory App., 94 (1997) 311-334.
  • [6] I. Chryssoverghi, A. Bacopoulos, Approximation of relaxed nonlinear parabolic optimal control problems, J. Optimiz. Theory App., 77 (1993) 31-50.
  • [7] T. Roubiček, A convergent computational method for constrained optimal relaxed control problems, J. Optimiz. Theory App., 69 (1991) 589-603.
  • [8] V. Azhmyakov, W. Schmidt, Approximations of relaxed optimal control problems, J. Optimiz. Theory App., 130 (2006) 61-77.
  • [9] N. Arada, J. P. Raymond, State-constrained relaxed problems for semilinear elliptic equations, J. Math. Anal. Appl., 223 (1998) 248-271.
  • [10] N. Arada, J. P. Raymond, Approximation of optimal control problems with state constraints, Numer. Funct. Anal. and Optimiz., 21 (2000) 601-621.
  • [11] E. Casas, The relaxation theory applied to optimal control problems of semilinear elliptic equations, J. Dolezal, J. Fidler (editors), System Modelling and Optimization, Chapman & Hall, London, 1996, pp. 187-194.
  • [12] I. Chryssoverghi, J. Coletsos, B. Kokkinis, Discrete relaxed method for semilinear parabolic optimal control problems, Control Cybernet., 28 (1999) 157-176.
  • [13] S. Luan, Nonexistence and existence of an optimal control problem governed by a class of semilinear elliptic equations, J. Optimiz. Theory App., 158 (2013) 1-10.
  • [14] I. Chryssoverghi, J. Coletsos, B. Kokkinis, Classical and relaxed optimization methods for nonlinear parabolic optimal control problems I. Lirkov, S. Margenov and J. Wasniewski (editors), Large-scale scientific computing, Springer-Verlag, Berlin, 2010, pp. 247-255.
  • [15] J. L. Lions, Quelques M´ethodes de R´esolution des Prob`emes aux Limites Non Lin´eaires, Dunod Gauthier-Villars, Paris, 1969.
  • [16] R. Temam, Navier-Stokes Equations, North-Holland, New York, 1977.
  • [17] S. Treanta, On signomial constrained optimal control problems, Commun. Adv. Math. Sci., 2 (2019), 55-59.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Basil Kokkinis 0000-0002-1632-0266

Publication Date June 10, 2020
Submission Date January 11, 2019
Acceptance Date January 7, 2020
Published in Issue Year 2020

Cite

APA Kokkinis, B. (2020). An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems. Fundamental Journal of Mathematics and Applications, 3(1), 33-44. https://doi.org/10.33401/fujma.645321
AMA Kokkinis B. An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems. Fundam. J. Math. Appl. June 2020;3(1):33-44. doi:10.33401/fujma.645321
Chicago Kokkinis, Basil. “An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems”. Fundamental Journal of Mathematics and Applications 3, no. 1 (June 2020): 33-44. https://doi.org/10.33401/fujma.645321.
EndNote Kokkinis B (June 1, 2020) An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems. Fundamental Journal of Mathematics and Applications 3 1 33–44.
IEEE B. Kokkinis, “An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems”, Fundam. J. Math. Appl., vol. 3, no. 1, pp. 33–44, 2020, doi: 10.33401/fujma.645321.
ISNAD Kokkinis, Basil. “An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems”. Fundamental Journal of Mathematics and Applications 3/1 (June 2020), 33-44. https://doi.org/10.33401/fujma.645321.
JAMA Kokkinis B. An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems. Fundam. J. Math. Appl. 2020;3:33–44.
MLA Kokkinis, Basil. “An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 33-44, doi:10.33401/fujma.645321.
Vancouver Kokkinis B. An Optimization Method for Semilinear Parabolic Relaxed Constrained Optimal Control Problems. Fundam. J. Math. Appl. 2020;3(1):33-44.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a