[1] B. Selcuk, N. Ozalp, Quenching behavior of semilinear heat equations with singular boundary conditions, Electron. J. Differ. Eq., 311 (2015), 1-13.
[2] H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1 1u , Publ. RIMS, Kyoto Univ., 10 (1975), 729-736.
[3] C. S. Chou, W. Sun, Y. Xing, H. Yang, Local discontinuous Galerkin methods for the Khokhlov-Zabolotskaya-Kuznetzov equation, J. Sci. Comput., 73
(2017), 593-616.
[4] H. Yang, High-order energy and linear momentum conserving methods for the Klein-Gordon equation, Math., (2018), Article ID 200, 17 pages.
[5] H. Yang, Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein-Gordon-Schrödinger
equations, J. Appl. Math. Comput., 62 (2020), 377-424.
[6] H. Yang, Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schr¨odinger equations, J. Korean Soc. Ind. Appl. Math., 24 (2020), 39-78.
[7] R. C. Mittal, R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun. Nonlinear. Sci., 17 (2012), 4616-4625.
[8] S. B. G. Karakoç, Y. Uçar, N. Yagmurluğ, Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 42 (2015), 141-159.
[9] H. Zeybek, S. B. G. Karakoc¸, A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline, SpringerPlus, (2016), Article ID 199, 17 pages.
[10] S. K. Bhowmik, S. B. G. Karakoc¸, Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method, Numer. Methods Partial Differ. Equ., 35 (2019), 2236-2257.
[11] S. B. G. Karakoç, S. K. Bhowmik, Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines, Comput. Math. Appl., 77 (2019), 1917-1932.
[13] L. Guo, Y. Yang, Positivity preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions, J. Comput. Phys., 289 (2015), 181-195.
[14] L. Shao, X. Feng, Y. He, The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Model., 54 (2011), 2943-2954.
A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation
In this paper, we study the numerical methods for solving a nonlinear reaction-diffusion model for the polarization phenomena in ionic conductors. In particular, we propose three types of numerical methods, including the finite difference, cubic B-spline collocation, and local discontinuous Galerkin method, to approximate the quenching time of the model. We prove the conservation properties for all three numerical methods and compare their numerical performance.
[1] B. Selcuk, N. Ozalp, Quenching behavior of semilinear heat equations with singular boundary conditions, Electron. J. Differ. Eq., 311 (2015), 1-13.
[2] H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1 1u , Publ. RIMS, Kyoto Univ., 10 (1975), 729-736.
[3] C. S. Chou, W. Sun, Y. Xing, H. Yang, Local discontinuous Galerkin methods for the Khokhlov-Zabolotskaya-Kuznetzov equation, J. Sci. Comput., 73
(2017), 593-616.
[4] H. Yang, High-order energy and linear momentum conserving methods for the Klein-Gordon equation, Math., (2018), Article ID 200, 17 pages.
[5] H. Yang, Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein-Gordon-Schrödinger
equations, J. Appl. Math. Comput., 62 (2020), 377-424.
[6] H. Yang, Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schr¨odinger equations, J. Korean Soc. Ind. Appl. Math., 24 (2020), 39-78.
[7] R. C. Mittal, R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun. Nonlinear. Sci., 17 (2012), 4616-4625.
[8] S. B. G. Karakoç, Y. Uçar, N. Yagmurluğ, Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 42 (2015), 141-159.
[9] H. Zeybek, S. B. G. Karakoc¸, A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline, SpringerPlus, (2016), Article ID 199, 17 pages.
[10] S. K. Bhowmik, S. B. G. Karakoc¸, Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method, Numer. Methods Partial Differ. Equ., 35 (2019), 2236-2257.
[11] S. B. G. Karakoç, S. K. Bhowmik, Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines, Comput. Math. Appl., 77 (2019), 1917-1932.
[13] L. Guo, Y. Yang, Positivity preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions, J. Comput. Phys., 289 (2015), 181-195.
[14] L. Shao, X. Feng, Y. He, The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Model., 54 (2011), 2943-2954.
Jones, F., & Yang, H. (2020). A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundamental Journal of Mathematics and Applications, 3(2), 144-152. https://doi.org/10.33401/fujma.755721
AMA
Jones F, Yang H. A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundam. J. Math. Appl. December 2020;3(2):144-152. doi:10.33401/fujma.755721
Chicago
Jones, Frederick, and He Yang. “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 144-52. https://doi.org/10.33401/fujma.755721.
EndNote
Jones F, Yang H (December 1, 2020) A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundamental Journal of Mathematics and Applications 3 2 144–152.
IEEE
F. Jones and H. Yang, “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 144–152, 2020, doi: 10.33401/fujma.755721.
ISNAD
Jones, Frederick - Yang, He. “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 144-152. https://doi.org/10.33401/fujma.755721.
JAMA
Jones F, Yang H. A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundam. J. Math. Appl. 2020;3:144–152.
MLA
Jones, Frederick and He Yang. “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 144-52, doi:10.33401/fujma.755721.
Vancouver
Jones F, Yang H. A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundam. J. Math. Appl. 2020;3(2):144-52.