Research Article
BibTex RIS Cite
Year 2020, , 144 - 152, 15.12.2020
https://doi.org/10.33401/fujma.755721

Abstract

References

  • [1] B. Selcuk, N. Ozalp, Quenching behavior of semilinear heat equations with singular boundary conditions, Electron. J. Differ. Eq., 311 (2015), 1-13.
  • [2] H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1 1􀀀u , Publ. RIMS, Kyoto Univ., 10 (1975), 729-736.
  • [3] C. S. Chou, W. Sun, Y. Xing, H. Yang, Local discontinuous Galerkin methods for the Khokhlov-Zabolotskaya-Kuznetzov equation, J. Sci. Comput., 73 (2017), 593-616.
  • [4] H. Yang, High-order energy and linear momentum conserving methods for the Klein-Gordon equation, Math., (2018), Article ID 200, 17 pages.
  • [5] H. Yang, Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein-Gordon-Schrödinger equations, J. Appl. Math. Comput., 62 (2020), 377-424.
  • [6] H. Yang, Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schr¨odinger equations, J. Korean Soc. Ind. Appl. Math., 24 (2020), 39-78.
  • [7] R. C. Mittal, R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun. Nonlinear. Sci., 17 (2012), 4616-4625.
  • [8] S. B. G. Karakoç, Y. Uçar, N. Yagmurluğ, Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 42 (2015), 141-159.
  • [9] H. Zeybek, S. B. G. Karakoc¸, A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline, SpringerPlus, (2016), Article ID 199, 17 pages.
  • [10] S. K. Bhowmik, S. B. G. Karakoc¸, Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method, Numer. Methods Partial Differ. Equ., 35 (2019), 2236-2257.
  • [11] S. B. G. Karakoç, S. K. Bhowmik, Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines, Comput. Math. Appl., 77 (2019), 1917-1932.
  • [12] X. Ding, Q.-J. Meng, L.-P. Yin, Discrete-time orthogonal spline collocation method for one-dimensional sine-Gordon equation, Discrete Dyn. Nat. Soc., (2015), Article ID 206264, 8 pages.
  • [13] L. Guo, Y. Yang, Positivity preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions, J. Comput. Phys., 289 (2015), 181-195.
  • [14] L. Shao, X. Feng, Y. He, The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Model., 54 (2011), 2943-2954.

A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation

Year 2020, , 144 - 152, 15.12.2020
https://doi.org/10.33401/fujma.755721

Abstract

In this paper, we study the numerical methods for solving a nonlinear reaction-diffusion model for the polarization phenomena in ionic conductors. In particular, we propose three types of numerical methods, including the finite difference, cubic B-spline collocation, and local discontinuous Galerkin method, to approximate the quenching time of the model. We prove the conservation properties for all three numerical methods and compare their numerical performance.

References

  • [1] B. Selcuk, N. Ozalp, Quenching behavior of semilinear heat equations with singular boundary conditions, Electron. J. Differ. Eq., 311 (2015), 1-13.
  • [2] H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1 1􀀀u , Publ. RIMS, Kyoto Univ., 10 (1975), 729-736.
  • [3] C. S. Chou, W. Sun, Y. Xing, H. Yang, Local discontinuous Galerkin methods for the Khokhlov-Zabolotskaya-Kuznetzov equation, J. Sci. Comput., 73 (2017), 593-616.
  • [4] H. Yang, High-order energy and linear momentum conserving methods for the Klein-Gordon equation, Math., (2018), Article ID 200, 17 pages.
  • [5] H. Yang, Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein-Gordon-Schrödinger equations, J. Appl. Math. Comput., 62 (2020), 377-424.
  • [6] H. Yang, Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schr¨odinger equations, J. Korean Soc. Ind. Appl. Math., 24 (2020), 39-78.
  • [7] R. C. Mittal, R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun. Nonlinear. Sci., 17 (2012), 4616-4625.
  • [8] S. B. G. Karakoç, Y. Uçar, N. Yagmurluğ, Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 42 (2015), 141-159.
  • [9] H. Zeybek, S. B. G. Karakoc¸, A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline, SpringerPlus, (2016), Article ID 199, 17 pages.
  • [10] S. K. Bhowmik, S. B. G. Karakoc¸, Numerical approximation of the generalized regularized long wave equation using Petrov-Galerkin finite element method, Numer. Methods Partial Differ. Equ., 35 (2019), 2236-2257.
  • [11] S. B. G. Karakoç, S. K. Bhowmik, Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines, Comput. Math. Appl., 77 (2019), 1917-1932.
  • [12] X. Ding, Q.-J. Meng, L.-P. Yin, Discrete-time orthogonal spline collocation method for one-dimensional sine-Gordon equation, Discrete Dyn. Nat. Soc., (2015), Article ID 206264, 8 pages.
  • [13] L. Guo, Y. Yang, Positivity preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions, J. Comput. Phys., 289 (2015), 181-195.
  • [14] L. Shao, X. Feng, Y. He, The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Model., 54 (2011), 2943-2954.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Frederick Jones This is me

He Yang 0000-0001-9608-4920

Publication Date December 15, 2020
Submission Date June 20, 2020
Acceptance Date November 5, 2020
Published in Issue Year 2020

Cite

APA Jones, F., & Yang, H. (2020). A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundamental Journal of Mathematics and Applications, 3(2), 144-152. https://doi.org/10.33401/fujma.755721
AMA Jones F, Yang H. A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundam. J. Math. Appl. December 2020;3(2):144-152. doi:10.33401/fujma.755721
Chicago Jones, Frederick, and He Yang. “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 144-52. https://doi.org/10.33401/fujma.755721.
EndNote Jones F, Yang H (December 1, 2020) A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundamental Journal of Mathematics and Applications 3 2 144–152.
IEEE F. Jones and H. Yang, “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 144–152, 2020, doi: 10.33401/fujma.755721.
ISNAD Jones, Frederick - Yang, He. “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 144-152. https://doi.org/10.33401/fujma.755721.
JAMA Jones F, Yang H. A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundam. J. Math. Appl. 2020;3:144–152.
MLA Jones, Frederick and He Yang. “A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 144-52, doi:10.33401/fujma.755721.
Vancouver Jones F, Yang H. A Comparative Study of the Numerical Approximations of the Quenching Time for a Nonlinear Reaction-Diffusion Equation. Fundam. J. Math. Appl. 2020;3(2):144-52.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a