Research Article
BibTex RIS Cite
Year 2021, , 100 - 109, 01.06.2021
https://doi.org/10.33401/fujma.874081

Abstract

References

  • [1] M. C. dos S. Mangueira, R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, A generalizacao da forma matricial da sequencia de Perrin, ReviSeM, 5 (1) (2020), 384-392.
  • [2] M. C. dos S. Mangueira, R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, A generalized Perrin polynomial sequence and its two-dimensional recurrences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), in press.
  • [3] P. Seenukul, Matrices which have similar properties to Padovan q -matrix and its generalized relations, SNRU Journal of Science and Technology, 7 (2) (2015), 90-94.
  • [4] A. G. Shannon, P. G. Anderson, A. F. Horadam, Properties of Cordonnier, Perrin and van der Laan numbers, IJEMST, 37 (7) (2006), 825-831.
  • [5] K. Sokhuma, Matrices formula for padovan and perrin sequences, Appl. Math. Sci., 7 (142) (2013), 7093-7096.
  • [6] C. J. Harman, Complex Fibonacci numbers, The Fibonacci Quarterly, 19 (1) (1981), 82-86.
  • [7] R. R. de Oliveira, F. R. V. Alves, R. E. B. Paiva, Identidades bi e tridimensionais para os numeros de Fibonacci na forma complexa, C.Q.D.-Revista Eletrˆonica Paulista de Matem´atica, 11 (2) (2017), 91-106.
  • [8] R. R. de. Oliveira, Engenharia didatica sobre o modelo de complexificacao da sequencia generalizada de Fibonacci: Relacoes recorrentes n-dimensionais e representacoes polinomiais e matriciais. Dissertacao de Mestrado Academico do Programa de Pos-graduacao em Ensino de Ciencias e Matematica do Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara - IFCE - Campus Fortaleza, 2018.
  • [9] R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, Relacoes bidimensionais e identidades da sequencia de Leonardo, ReviSeM, 4 (2) (2019), 156-173.

Perrin n-Dimensional Relations

Year 2021, , 100 - 109, 01.06.2021
https://doi.org/10.33401/fujma.874081

Abstract

This work aims, to perform a complexity in the Perrin sequence, to present the two-dimensional, three-dimensional, and n-dimensional recurrence relations of this sequence. Thus, from the one-dimensional relationship of this sequence, we will discuss the increase of its dimensionality and the insertion of imaginary units in the Perrin sequence, which is a recursive sequence of third order and presents large similarities with the Padovan sequence, differing only its initial values. Moreover, we will present a relationship between the Perrin numbers and the Padovan numbers, which will be used to perform the complexity of this sequence.

References

  • [1] M. C. dos S. Mangueira, R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, A generalizacao da forma matricial da sequencia de Perrin, ReviSeM, 5 (1) (2020), 384-392.
  • [2] M. C. dos S. Mangueira, R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, A generalized Perrin polynomial sequence and its two-dimensional recurrences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), in press.
  • [3] P. Seenukul, Matrices which have similar properties to Padovan q -matrix and its generalized relations, SNRU Journal of Science and Technology, 7 (2) (2015), 90-94.
  • [4] A. G. Shannon, P. G. Anderson, A. F. Horadam, Properties of Cordonnier, Perrin and van der Laan numbers, IJEMST, 37 (7) (2006), 825-831.
  • [5] K. Sokhuma, Matrices formula for padovan and perrin sequences, Appl. Math. Sci., 7 (142) (2013), 7093-7096.
  • [6] C. J. Harman, Complex Fibonacci numbers, The Fibonacci Quarterly, 19 (1) (1981), 82-86.
  • [7] R. R. de Oliveira, F. R. V. Alves, R. E. B. Paiva, Identidades bi e tridimensionais para os numeros de Fibonacci na forma complexa, C.Q.D.-Revista Eletrˆonica Paulista de Matem´atica, 11 (2) (2017), 91-106.
  • [8] R. R. de. Oliveira, Engenharia didatica sobre o modelo de complexificacao da sequencia generalizada de Fibonacci: Relacoes recorrentes n-dimensionais e representacoes polinomiais e matriciais. Dissertacao de Mestrado Academico do Programa de Pos-graduacao em Ensino de Ciencias e Matematica do Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara - IFCE - Campus Fortaleza, 2018.
  • [9] R. P. M. Vieira, F. R. V. Alves, P. M. M. C. Catarino, Relacoes bidimensionais e identidades da sequencia de Leonardo, ReviSeM, 4 (2) (2019), 156-173.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Renata Vieira 0000-0002-1966-7097

Milena Mangueira 0000-0002-4446-155X

Francisco Regis Alves 0000-0003-3710-1561

Paula Maria Machado Cruz Catarino 0000-0001-6917-5093

Publication Date June 1, 2021
Submission Date February 4, 2021
Acceptance Date May 19, 2021
Published in Issue Year 2021

Cite

APA Vieira, R., Mangueira, M., Alves, F. R., Cruz Catarino, P. M. M. (2021). Perrin n-Dimensional Relations. Fundamental Journal of Mathematics and Applications, 4(2), 100-109. https://doi.org/10.33401/fujma.874081
AMA Vieira R, Mangueira M, Alves FR, Cruz Catarino PMM. Perrin n-Dimensional Relations. Fundam. J. Math. Appl. June 2021;4(2):100-109. doi:10.33401/fujma.874081
Chicago Vieira, Renata, Milena Mangueira, Francisco Regis Alves, and Paula Maria Machado Cruz Catarino. “Perrin N-Dimensional Relations”. Fundamental Journal of Mathematics and Applications 4, no. 2 (June 2021): 100-109. https://doi.org/10.33401/fujma.874081.
EndNote Vieira R, Mangueira M, Alves FR, Cruz Catarino PMM (June 1, 2021) Perrin n-Dimensional Relations. Fundamental Journal of Mathematics and Applications 4 2 100–109.
IEEE R. Vieira, M. Mangueira, F. R. Alves, and P. M. M. Cruz Catarino, “Perrin n-Dimensional Relations”, Fundam. J. Math. Appl., vol. 4, no. 2, pp. 100–109, 2021, doi: 10.33401/fujma.874081.
ISNAD Vieira, Renata et al. “Perrin N-Dimensional Relations”. Fundamental Journal of Mathematics and Applications 4/2 (June 2021), 100-109. https://doi.org/10.33401/fujma.874081.
JAMA Vieira R, Mangueira M, Alves FR, Cruz Catarino PMM. Perrin n-Dimensional Relations. Fundam. J. Math. Appl. 2021;4:100–109.
MLA Vieira, Renata et al. “Perrin N-Dimensional Relations”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 2, 2021, pp. 100-9, doi:10.33401/fujma.874081.
Vancouver Vieira R, Mangueira M, Alves FR, Cruz Catarino PMM. Perrin n-Dimensional Relations. Fundam. J. Math. Appl. 2021;4(2):100-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a