Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 137 - 143, 15.12.2020
https://doi.org/10.33401/fujma.785781

Abstract

References

  • [1] B. Y. Chen, J. Morvan, T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9 (1986), 406–418.
  • [2] B. Y. Chen, Total mean curvature and submanifolds finite type, World Scientific, New Jersey, 1984.
  • [3] O. J. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J., 11 (1988), 25–31.
  • [4] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
  • [5] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385.
  • [6] F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21.
  • [7] O. J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata, 34 (1990), 105–112.
  • [8] B. Senoussi, M. Bekkar, Helicoidal surfaces with DJ r = Ar in 3-dimensional Euclidean space, Stud. Univ. Babes-Bolyai Math., 60 (2015), 437–448.
  • [9] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math., 45 (2014), 87–108.
  • [10] M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. of Geo. 107(3) (2016), 603–615.
  • [11] M. E. Aydin, Constant curvature factorable surfaces in 3-dimensional isotropic space, J. Korean Math. Soc., 55 (1) (2018) 59–7.
  • [12] M. E. Aydin, A. Erdur, M. Ergut, Affine factorable surfaces in isotropic spaces, TWMS J. Pure Appl. Math., 11 (2020), 72–88.
  • [13] M. E. Aydin, I. Mihai, On certain surfaces in the isotropic 4-space, Math. Com., 22(1) (2017), 41-51.
  • [14] M. E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG proceedings 23, (2016) 1–10.
  • [15] A. Kelleci, L. C. B. da Silva, Invariant surfaces with coordinate finite-type Gauss map in simply isotropic space, J. Math. Anal. Appl., (in press).
  • [16] L. C. B. da Silva, The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces, J. of Geom., 110(2) (2019), 31.
  • [17] L. C. B. da Silva, Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces, Math. J. Okayama Univ., (in press).
  • [18] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces of type-2 in the three-dimensional simply isotropic space I13, Bull. Korean Math. Soc., 54 (2017), 953–965.
  • [19] A. Cakmak, M. K. Karacan, S. Kiziltug, Dual surfaces defined by z = f (u)+g(v) in simply isotropic 3-space I13, Commun. Korean Math. Soc., 34 (2019), 267–277.
  • [20] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces in the three-dimensional simply isotropic space I13 satisfying DIIIxi = lixi, Konuralp J. Math., 4 (2016), 275–281.
  • [21] M. K. Karacan, D. W. Yoon, B. Bukcu, Translation surfaces in the three-dimensional simply isotropic space I13, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650088.
  • [22] M. K. Karacan, D. W. Yoon, B. Bukcu, Surfaces of revolution in the three-dimensional simply isotropic space I13, Asia Pac. J. Math., 4 (2017), 1–10.
  • [23] M. E. Aydin, M. Ergut, Affine translation surfaces in the isotropic 3-space, Int. Electron. J. Geom., 10 (2017), 21–30.
  • [24] M. K. Karacan, D. W. Yoon, S. Kiziltug, Helicoidal surfaces in the three-dimensional simply isotropic space, I13, Tamkang J. Math., 48 (2017), 123–134.
  • [25] M. K. Karacan, D. W. Yoon, N. Yuksel, Classification of some special types ruled surfaces in simply isotropic 3-space, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica, 55 (2017), 87–98.
  • [26] H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.

Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces

Year 2020, Volume: 3 Issue: 2, 137 - 143, 15.12.2020
https://doi.org/10.33401/fujma.785781

Abstract

In this paper, we classify warped translation surfaces being invariant surfaces of i-type, that is, the generating curve has formed by the intersection of the surface with the isotropic xz-plane in the three-dimensional simply isotropic space $\mathbb I^3$ under the conditio$\Delta^{J}x_i=\lambda_i x_i,$  with J=I,II.  Here, $\Delta^{J}$ is the Laplace operator with respect to first and second fundamental form and $\lambda_i$, $i=1,2,3$ are some real numbers. Also, as an application, we give some examples for these surfaces and also some explicit graphics of them. All graphics have been plotted with Maple14.

References

  • [1] B. Y. Chen, J. Morvan, T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9 (1986), 406–418.
  • [2] B. Y. Chen, Total mean curvature and submanifolds finite type, World Scientific, New Jersey, 1984.
  • [3] O. J. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J., 11 (1988), 25–31.
  • [4] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
  • [5] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385.
  • [6] F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21.
  • [7] O. J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata, 34 (1990), 105–112.
  • [8] B. Senoussi, M. Bekkar, Helicoidal surfaces with DJ r = Ar in 3-dimensional Euclidean space, Stud. Univ. Babes-Bolyai Math., 60 (2015), 437–448.
  • [9] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math., 45 (2014), 87–108.
  • [10] M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. of Geo. 107(3) (2016), 603–615.
  • [11] M. E. Aydin, Constant curvature factorable surfaces in 3-dimensional isotropic space, J. Korean Math. Soc., 55 (1) (2018) 59–7.
  • [12] M. E. Aydin, A. Erdur, M. Ergut, Affine factorable surfaces in isotropic spaces, TWMS J. Pure Appl. Math., 11 (2020), 72–88.
  • [13] M. E. Aydin, I. Mihai, On certain surfaces in the isotropic 4-space, Math. Com., 22(1) (2017), 41-51.
  • [14] M. E. Aydin, A.O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG proceedings 23, (2016) 1–10.
  • [15] A. Kelleci, L. C. B. da Silva, Invariant surfaces with coordinate finite-type Gauss map in simply isotropic space, J. Math. Anal. Appl., (in press).
  • [16] L. C. B. da Silva, The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces, J. of Geom., 110(2) (2019), 31.
  • [17] L. C. B. da Silva, Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces, Math. J. Okayama Univ., (in press).
  • [18] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces of type-2 in the three-dimensional simply isotropic space I13, Bull. Korean Math. Soc., 54 (2017), 953–965.
  • [19] A. Cakmak, M. K. Karacan, S. Kiziltug, Dual surfaces defined by z = f (u)+g(v) in simply isotropic 3-space I13, Commun. Korean Math. Soc., 34 (2019), 267–277.
  • [20] B. Bukcu, M. K. Karacan, D. W. Yoon, Translation surfaces in the three-dimensional simply isotropic space I13 satisfying DIIIxi = lixi, Konuralp J. Math., 4 (2016), 275–281.
  • [21] M. K. Karacan, D. W. Yoon, B. Bukcu, Translation surfaces in the three-dimensional simply isotropic space I13, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650088.
  • [22] M. K. Karacan, D. W. Yoon, B. Bukcu, Surfaces of revolution in the three-dimensional simply isotropic space I13, Asia Pac. J. Math., 4 (2017), 1–10.
  • [23] M. E. Aydin, M. Ergut, Affine translation surfaces in the isotropic 3-space, Int. Electron. J. Geom., 10 (2017), 21–30.
  • [24] M. K. Karacan, D. W. Yoon, S. Kiziltug, Helicoidal surfaces in the three-dimensional simply isotropic space, I13, Tamkang J. Math., 48 (2017), 123–134.
  • [25] M. K. Karacan, D. W. Yoon, N. Yuksel, Classification of some special types ruled surfaces in simply isotropic 3-space, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica, 55 (2017), 87–98.
  • [26] H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Alev Kelleci Akbay 0000-0003-2528-2131

Publication Date December 15, 2020
Submission Date August 26, 2020
Acceptance Date November 5, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Kelleci Akbay, A. (2020). Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundamental Journal of Mathematics and Applications, 3(2), 137-143. https://doi.org/10.33401/fujma.785781
AMA Kelleci Akbay A. Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundam. J. Math. Appl. December 2020;3(2):137-143. doi:10.33401/fujma.785781
Chicago Kelleci Akbay, Alev. “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 137-43. https://doi.org/10.33401/fujma.785781.
EndNote Kelleci Akbay A (December 1, 2020) Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundamental Journal of Mathematics and Applications 3 2 137–143.
IEEE A. Kelleci Akbay, “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 137–143, 2020, doi: 10.33401/fujma.785781.
ISNAD Kelleci Akbay, Alev. “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 137-143. https://doi.org/10.33401/fujma.785781.
JAMA Kelleci Akbay A. Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundam. J. Math. Appl. 2020;3:137–143.
MLA Kelleci Akbay, Alev. “Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 137-43, doi:10.33401/fujma.785781.
Vancouver Kelleci Akbay A. Warped Translation Surfaces of Finite Type in Simply Isotropic 3-Spaces. Fundam. J. Math. Appl. 2020;3(2):137-43.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a