Year 2021,
Volume: 4 Issue: 3, 180 - 186, 30.09.2021
Kemal Eren
,
Hidayet Hüda Kösal
References
- [1] W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
- [2] Y. Tian, Universal factorization equalities for quaternion matrices and their applications, Math. J. Okoyama Univ., 41 (1999), 45-62.
- [3] S. L. Adler, Quaternionic Quantum Mechanic and Quantum Fields, Oxford U. P., New York, 1994.
- [4] C. K. C. Jack, Quaternion kinematic and dynamic differential equations, IEEE Trans Robotics and Automation, 8 (1992), 53-64.
- [5] S. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. Ec. Norm. Sup. Paris, 19 (1986), 31-54.
- [6] S. C. Pei, C. M. Cheng, Quaternion matrix singular value decomposition and its applications for color image processing, Int. Conf. Image Processing, 1 (2003), 805-808.
- [7] C. Segre, The real representations of complex elements and extension to bicomplex systems, Math. Ann., 40 (1892), 413-467.
- [8] F. Catoni, R. Cannata, P. Zampetti, An introduction to commutative quaternions, Adv. Appl. Clifford Algebras, 16 (2006), 1-28.
- [9] S. C. Pei, J. H. Chang, J. J. Ding, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, IEEE Transactions on Signal Processing, 52 (2004), 2012-2031.
- [10] S. C. Pei, J. H. Chang, J. J. Ding, M. Y. Chen, Eigenvalues and singular value decompositions of reduced biquaternion matrices, IEEE Trans. Circ. Syst. I., 55 (2008), 2673-2685.
- [11] T. Isokawa, H. Nishimura, N. Matsui, Commutative quaternion and multistate Hopfield neural networks, In Proc. Int. Joint Conf. Neural Netw., (2010), 1281-1286.
- [12] H. H. Kosal, On the Commutative quaternion matrices, Ph. D. Thesis, Sakarya University, 2016.
- [13] H. H. Kosal, An Algorithm for solutions to the elliptic quaternion matrix equation AX = B, CPOST., 1(1) (2018), 36-40.
- [14] A. Jameson, Solution of the equation $ax + xb = c$ by inversion of an $m\times m$ or $n\times n$ matrix, SIAM J. Appl. Math., 16(5)(1968), 1020-1023.
- [15] E. Souza, S. P. Bhattacharyya, Controllability, observability and the solution of $ax - xb = c$, Linear Algebra Appl., 39(1981), 167-188.
- [16] M. Dehghan, M. Hajarian, Efficient iterative method for solving the second-order Sylvester matrix equation $EVF^2-AVF-CV=BW$, IET Contr. Theory Appl., 3(10)(2009), 1401-1408.
- [17]C. Song, G. Chen, On solutions of matrix equations $XF-AX=C$ and $XF - A\mathop X\limits^ \sim = C$ over quaternion field, J. Appl. Math. Comput., \textbf{37}(1-2)(2011), 57-68.
- [18] X. Zhang, A system of generalized Sylvester quaternion matrix equations and its applications, Appl. Math. Comput., 273 (2016), 74-81.
Numerical Algorithm for Solving General Linear Elliptic Quaternionic Matrix Equations
Year 2021,
Volume: 4 Issue: 3, 180 - 186, 30.09.2021
Kemal Eren
,
Hidayet Hüda Kösal
Abstract
In this study, we develop a general method to solve the general linear elliptic quaternionic matrix equations by means of real representation of elliptic quaternion matrices. A pseudocode for our approach that provides the solution of the linear elliptic quaternionic matrix equations is expressed. Moreover, we apply this method to the well-known Slyvester matrix equations and Kalman Yakubovich matrix equations over the elliptic quaternion algebra.
References
- [1] W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
- [2] Y. Tian, Universal factorization equalities for quaternion matrices and their applications, Math. J. Okoyama Univ., 41 (1999), 45-62.
- [3] S. L. Adler, Quaternionic Quantum Mechanic and Quantum Fields, Oxford U. P., New York, 1994.
- [4] C. K. C. Jack, Quaternion kinematic and dynamic differential equations, IEEE Trans Robotics and Automation, 8 (1992), 53-64.
- [5] S. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. Ec. Norm. Sup. Paris, 19 (1986), 31-54.
- [6] S. C. Pei, C. M. Cheng, Quaternion matrix singular value decomposition and its applications for color image processing, Int. Conf. Image Processing, 1 (2003), 805-808.
- [7] C. Segre, The real representations of complex elements and extension to bicomplex systems, Math. Ann., 40 (1892), 413-467.
- [8] F. Catoni, R. Cannata, P. Zampetti, An introduction to commutative quaternions, Adv. Appl. Clifford Algebras, 16 (2006), 1-28.
- [9] S. C. Pei, J. H. Chang, J. J. Ding, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, IEEE Transactions on Signal Processing, 52 (2004), 2012-2031.
- [10] S. C. Pei, J. H. Chang, J. J. Ding, M. Y. Chen, Eigenvalues and singular value decompositions of reduced biquaternion matrices, IEEE Trans. Circ. Syst. I., 55 (2008), 2673-2685.
- [11] T. Isokawa, H. Nishimura, N. Matsui, Commutative quaternion and multistate Hopfield neural networks, In Proc. Int. Joint Conf. Neural Netw., (2010), 1281-1286.
- [12] H. H. Kosal, On the Commutative quaternion matrices, Ph. D. Thesis, Sakarya University, 2016.
- [13] H. H. Kosal, An Algorithm for solutions to the elliptic quaternion matrix equation AX = B, CPOST., 1(1) (2018), 36-40.
- [14] A. Jameson, Solution of the equation $ax + xb = c$ by inversion of an $m\times m$ or $n\times n$ matrix, SIAM J. Appl. Math., 16(5)(1968), 1020-1023.
- [15] E. Souza, S. P. Bhattacharyya, Controllability, observability and the solution of $ax - xb = c$, Linear Algebra Appl., 39(1981), 167-188.
- [16] M. Dehghan, M. Hajarian, Efficient iterative method for solving the second-order Sylvester matrix equation $EVF^2-AVF-CV=BW$, IET Contr. Theory Appl., 3(10)(2009), 1401-1408.
- [17]C. Song, G. Chen, On solutions of matrix equations $XF-AX=C$ and $XF - A\mathop X\limits^ \sim = C$ over quaternion field, J. Appl. Math. Comput., \textbf{37}(1-2)(2011), 57-68.
- [18] X. Zhang, A system of generalized Sylvester quaternion matrix equations and its applications, Appl. Math. Comput., 273 (2016), 74-81.