Research Article
BibTex RIS Cite

On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces

Year 2022, Volume: 5 Issue: 4, 210 - 227, 01.12.2022
https://doi.org/10.33401/fujma.1107963

Abstract

This article aims to specify a new $C-$class function endowed with altering distance and ultra altering distance function via generalized $\Xi -$contraction, which is called the $\mathcal{G}\left( {\Sigma ,\vartheta ,\Xi } \right) - $contraction in modular $b-$metric spaces. Regarding these new contraction type mappings, the study includes some existence and uniqueness theorems, and to indicate the usability and productivity of these results, some applications related to integral type contractions and an application to the graph structure.

References

  • [1] S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 1 (1922), 133-181.
  • [2] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37.
  • [3] S. Czerwik, Contraction mappings in b􀀀metric spaces, Acta. Math. Inform. Univ. Ostrav, 1 (1) (1993), 5-11.
  • [4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
  • [5] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b􀀀metric spaces, Math. Slovaca, 64 (4) (2014), 941–960.
  • [6] V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math., 15 (2008), 3-24.
  • [7] V. V. Chistyakov, Modular metric spaces, I: Basic concepts. Nonlinear Anal., 72 (2010), 1-14.
  • [8] V. V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Anal., 72 (2010), 15-30.
  • [9] V. V. Chistyakov, Fixed points of modular contractive maps, Dokl. Math., 86 (2012), 515-518.
  • [10] C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl., 93 (2011), 1-9.
  • [11] M. E. Ege, C. Alaca, Some results for modular b􀀀metric spaces and an application to system of linear equations, Azerbaijan J. Math., 8 (1) (2018), 3-14.
  • [12] V. Parvaneh, N. Hussain, M. Khorshidi, N. Mlaiki, H. Aydi, Fixed point results for generalized F-contractions in modular b-metric spaces with applications, Mathematics, 7 (10) (2019), 1-16.
  • [13] A. H. Ansari, Note on ”j 􀀀y􀀀contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, September/2014, 11 (2014), 377–380.
  • [14] M. S. Khan, M. Swalesh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1–9.
  • [15] A. H. Ansari, J. M. Kumar, N. Saleem, Inverse C􀀀class function on weak semi compatibility and fixed point theorems for expansive mappings in G-metric spaces, Math. Morav., 24 (1) (2020), 93-108.
  • [16] A. H. Ansari, T. Dosenovic, S. Radenovic, N. Saleem, V. Sesum-Cavic, C􀀀class functions on some fixed point results in ordered partial metric space via admissible mappings, Novi Sad J. Math., 49 (1) (2019), 101-116. [17] N. Saleem, A. H. Ansari, M. K. Jain, Some fixed point theorems of inverse C􀀀class function under weak semi compatibility, J. Fixed Point Theory, 9 (2018), 2018.
  • [18] A. H. Ansari, N. Saleem, B. Fisher, M. S. Khan, C􀀀class function on Khan type fixed point theorems in generalized metric space, Filomat, 31 (11) (2017), 3483-3494.
  • [19] A. Fulga, A. M. Proca, Fixed point for Geraghty JE􀀀contractions, J. Nonlinear Sci. Appl., 10 (2017), 5125-5131. doi.org/10.22436/jnsa.010.09.48.
  • [20] A. Fulga, A. M. Proca, A new Generalization of Wardowski fixed point theorem in complete metric spaces, Adv. Theory Nonlinear Anal. Appl., 1 (2017), 57-63.
  • [21] A. Fulga, E. Karapınar, Some results on S􀀀contractions of Type E, Mathematics, 195 (6) (2018), 1-9.
  • [22] B. Alqahtani, A. Fulga, E. Karapınar, A short note on the common fixed points of the Geraghty contraction of type ES;T , Demonstr. Math., 51 (2018), 233-240.
  • [23] A. M. Proca, Fixed point theorem for jM􀀀Geraghty contraction, In: Proceedings of the Scientific Research and Education in the Air Force (AFASES2018), May 22-27/2018, Brasov, Romania, 1 (2018), 311-316. doi.org/10.19062/2247-3173.2018.20.41.
  • [24] A. M. Proca, New fixed point theorem for generalized contractions, Bull. Transilv. Univ. Bras. III: Math. Inform. Phys, 12 (61) (2019), 435-442.
  • [25] L. Ciric, On contraction type mappings, Math. Balcanica, 1 (1971), 52-57.
  • [26] G. Jungck, Common fixed points for non-continuous nonself mappings on non-numeric spaces, Far East J. Math. Sci., 4 (2) (1996), 199-212.
  • [27] H. Aydi, A. Felhi, E. Karapınar, S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miskolc. Math. Notes, 19 (2018), 111-124. doi.org/10.18514/mmn.2018.1652.
  • [28] E. Girgin, M. O¨ ztu¨rk, Modified Suzuki-Simulation type contractive mapping in non-Archimedean quasi modular metric spaces and application to graph theory, Mathematics, 7 (9) (2019), 1-14. doi.org/10.3390/math7090769.
  • [29] D. Gopal, C. Vetro, M. Abbas, D. K. Patel, Some coincidence and periodic points results in a metric space endowed with a graph and applications, Banach J. Math. Anal., 9 (2015), 128–140. doi.org/10.15352/bjma/09-3-9.
  • [30] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536.
  • [31] B. Azadifar, G. Sadeghi, R. Saadati, C. Park, Integral type contractions in modular metric spaces, J. Inequalities Appl., 483 (2013), 1-14. doi.org/10.1186/1029-242x-2013-483.
Year 2022, Volume: 5 Issue: 4, 210 - 227, 01.12.2022
https://doi.org/10.33401/fujma.1107963

Abstract

References

  • [1] S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 1 (1922), 133-181.
  • [2] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37.
  • [3] S. Czerwik, Contraction mappings in b􀀀metric spaces, Acta. Math. Inform. Univ. Ostrav, 1 (1) (1993), 5-11.
  • [4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
  • [5] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b􀀀metric spaces, Math. Slovaca, 64 (4) (2014), 941–960.
  • [6] V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math., 15 (2008), 3-24.
  • [7] V. V. Chistyakov, Modular metric spaces, I: Basic concepts. Nonlinear Anal., 72 (2010), 1-14.
  • [8] V. V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Anal., 72 (2010), 15-30.
  • [9] V. V. Chistyakov, Fixed points of modular contractive maps, Dokl. Math., 86 (2012), 515-518.
  • [10] C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl., 93 (2011), 1-9.
  • [11] M. E. Ege, C. Alaca, Some results for modular b􀀀metric spaces and an application to system of linear equations, Azerbaijan J. Math., 8 (1) (2018), 3-14.
  • [12] V. Parvaneh, N. Hussain, M. Khorshidi, N. Mlaiki, H. Aydi, Fixed point results for generalized F-contractions in modular b-metric spaces with applications, Mathematics, 7 (10) (2019), 1-16.
  • [13] A. H. Ansari, Note on ”j 􀀀y􀀀contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, September/2014, 11 (2014), 377–380.
  • [14] M. S. Khan, M. Swalesh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1–9.
  • [15] A. H. Ansari, J. M. Kumar, N. Saleem, Inverse C􀀀class function on weak semi compatibility and fixed point theorems for expansive mappings in G-metric spaces, Math. Morav., 24 (1) (2020), 93-108.
  • [16] A. H. Ansari, T. Dosenovic, S. Radenovic, N. Saleem, V. Sesum-Cavic, C􀀀class functions on some fixed point results in ordered partial metric space via admissible mappings, Novi Sad J. Math., 49 (1) (2019), 101-116. [17] N. Saleem, A. H. Ansari, M. K. Jain, Some fixed point theorems of inverse C􀀀class function under weak semi compatibility, J. Fixed Point Theory, 9 (2018), 2018.
  • [18] A. H. Ansari, N. Saleem, B. Fisher, M. S. Khan, C􀀀class function on Khan type fixed point theorems in generalized metric space, Filomat, 31 (11) (2017), 3483-3494.
  • [19] A. Fulga, A. M. Proca, Fixed point for Geraghty JE􀀀contractions, J. Nonlinear Sci. Appl., 10 (2017), 5125-5131. doi.org/10.22436/jnsa.010.09.48.
  • [20] A. Fulga, A. M. Proca, A new Generalization of Wardowski fixed point theorem in complete metric spaces, Adv. Theory Nonlinear Anal. Appl., 1 (2017), 57-63.
  • [21] A. Fulga, E. Karapınar, Some results on S􀀀contractions of Type E, Mathematics, 195 (6) (2018), 1-9.
  • [22] B. Alqahtani, A. Fulga, E. Karapınar, A short note on the common fixed points of the Geraghty contraction of type ES;T , Demonstr. Math., 51 (2018), 233-240.
  • [23] A. M. Proca, Fixed point theorem for jM􀀀Geraghty contraction, In: Proceedings of the Scientific Research and Education in the Air Force (AFASES2018), May 22-27/2018, Brasov, Romania, 1 (2018), 311-316. doi.org/10.19062/2247-3173.2018.20.41.
  • [24] A. M. Proca, New fixed point theorem for generalized contractions, Bull. Transilv. Univ. Bras. III: Math. Inform. Phys, 12 (61) (2019), 435-442.
  • [25] L. Ciric, On contraction type mappings, Math. Balcanica, 1 (1971), 52-57.
  • [26] G. Jungck, Common fixed points for non-continuous nonself mappings on non-numeric spaces, Far East J. Math. Sci., 4 (2) (1996), 199-212.
  • [27] H. Aydi, A. Felhi, E. Karapınar, S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miskolc. Math. Notes, 19 (2018), 111-124. doi.org/10.18514/mmn.2018.1652.
  • [28] E. Girgin, M. O¨ ztu¨rk, Modified Suzuki-Simulation type contractive mapping in non-Archimedean quasi modular metric spaces and application to graph theory, Mathematics, 7 (9) (2019), 1-14. doi.org/10.3390/math7090769.
  • [29] D. Gopal, C. Vetro, M. Abbas, D. K. Patel, Some coincidence and periodic points results in a metric space endowed with a graph and applications, Banach J. Math. Anal., 9 (2015), 128–140. doi.org/10.15352/bjma/09-3-9.
  • [30] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536.
  • [31] B. Azadifar, G. Sadeghi, R. Saadati, C. Park, Integral type contractions in modular metric spaces, J. Inequalities Appl., 483 (2013), 1-14. doi.org/10.1186/1029-242x-2013-483.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mahpeyker Öztürk 0000-0003-2946-6114

Abdurrahman Büyükkaya 0000-0001-6197-8975

Publication Date December 1, 2022
Submission Date April 23, 2022
Acceptance Date August 27, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Öztürk, M., & Büyükkaya, A. (2022). On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces. Fundamental Journal of Mathematics and Applications, 5(4), 210-227. https://doi.org/10.33401/fujma.1107963
AMA Öztürk M, Büyükkaya A. On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces. Fundam. J. Math. Appl. December 2022;5(4):210-227. doi:10.33401/fujma.1107963
Chicago Öztürk, Mahpeyker, and Abdurrahman Büyükkaya. “On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces”. Fundamental Journal of Mathematics and Applications 5, no. 4 (December 2022): 210-27. https://doi.org/10.33401/fujma.1107963.
EndNote Öztürk M, Büyükkaya A (December 1, 2022) On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces. Fundamental Journal of Mathematics and Applications 5 4 210–227.
IEEE M. Öztürk and A. Büyükkaya, “On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces”, Fundam. J. Math. Appl., vol. 5, no. 4, pp. 210–227, 2022, doi: 10.33401/fujma.1107963.
ISNAD Öztürk, Mahpeyker - Büyükkaya, Abdurrahman. “On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces”. Fundamental Journal of Mathematics and Applications 5/4 (December 2022), 210-227. https://doi.org/10.33401/fujma.1107963.
JAMA Öztürk M, Büyükkaya A. On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces. Fundam. J. Math. Appl. 2022;5:210–227.
MLA Öztürk, Mahpeyker and Abdurrahman Büyükkaya. “On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 4, 2022, pp. 210-27, doi:10.33401/fujma.1107963.
Vancouver Öztürk M, Büyükkaya A. On Some Fixed Point Theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )-$Contractions in Modular $b-$Metric Spaces. Fundam. J. Math. Appl. 2022;5(4):210-27.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a