On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function
Year 2024,
Volume: 7 Issue: 1, 35 - 52, 31.03.2024
Seda Karateke
Abstract
In this article, some mathematical properties of $\left( \iota ,x_{0}\right) $-generalized logistic-type function are presented. This four-parameter generalized function can be considered as a statistical phenomenon enhancing more vigorous survival analysis models. Moreover, the behaviors of the relevant parametric functions obtained are examined with graphics using computer programming language Python 3.9.
References
- [1] J. Zhang, L. Yin and W. Cui, The monotonic properties of (p;a)-generalized sigmoid function with application, Pak. J. Statist., 35(2) (2019),
171-185. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85073286109&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+monotonic+properties+of+%24%28p%2Ca%29%24-generalized+sigmoid+function+with+application%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
- [2] M.I. Jordan, Why the logistic function? A tutorial discussion on probabilities and neural networks, (1995).
- [3] R.M. Neal, Connectionist learning of belief networks, Artif. Intell., 56(1), 1992, 71-113. $\href{https://doi.org/10.1016/0004-3702(92)90065-6}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-44049116681&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Connectionist+learning+of+belief+networks%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992JC65200003}{[\mbox{Web of Science}]}$
- [4] P. McCullagh and J. Nelder, Generalized Linear Models, Second Edition. Chapman & Hall., (1989), ISBN: 9780412317606. $\href{http://dx.doi.org/10.1007/978-1-4899-3242-6}{[\mbox{CrossRef}]}$
- [5] D. Yu, Softmax function based intuitionistic fuzzy multi-criteria decision making and applications, Oper. Res. Int. J., 16 (2016), 327-348. $\href{https://doi.org/10.1007/s12351-015-0196-7}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84941369239&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Softmax+function+based+intuitionistic+fuzzy+multi-criteria+decision+making+and+applications%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000380151400010}{[\mbox{Web of Science}]} $
- [6] R. Torres, R. Salas and H. Astudillo, Time-based hesitant fuzzy information aggregation approach for decision making problems, Int. J. Intell.
Syst., 29(6) (2014), 579-595. $\href{https://doi.org/10.1002/int.21658}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84898965197&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Time-based+hesitant+fuzzy+information+aggregation+approach+for+decision+making+problems%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000334488400006}{[\mbox{Web of Science}]}$
- [7] I. Goodfellow, Y. Bengio and A. Courville, 6.2.2.3 Softmax Units for Multinoulli Output Distributions, Deep Learning. MIT Press., (2016),
180-184. ISBN 978-0-26203561-3.
- [8] G.A. Anastassiou, Banach Space Valued Multivariate Multi Layer Neural Network Approximation Based on q-Deformed and l-Parametrized
A-Generalized Logistic Function. In: Parametrized, Deformed and General Neural Networks, Studies in Computational Intelligence, 1116.
Springer, Cham., (2023), 365-394. $\href{https://doi.org/10.1007/978-3-031-43021-3_15}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85175065590&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Banach+Space+Valued+Multivariate+Multi+Layer+Neural+Network+Approximation+Based+on%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
- [9] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158(1) (1991), 63-79. $\href{https://doi.org/10.1016/0022-247X(91)90267-4}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-0003107294&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Exactly+solvable+supersymmetric+quantum+mechanics%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1991FW13900006}{[\mbox{Web of Science}]}$
- [10] G.D. Anderson, M. Vamanamurthy, and M.Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2) (2007), 1294-1308. $\href{https://doi.org/10.1016/j.jmaa.2007.02.016}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-34447529172&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+convexity+and+inequalities%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=2}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000248854000039}{[\mbox{Web of Science}]} $
- [11] P.S. Bullen, Handbook of Means and Their Inequalities, Springer Science & Business Media (560), 2013. $\href{https://doi.org/10.1007/978-94-017-0399-4}{[\mbox{CrossRef}]}$
- [12] P.S. Bullen, D.S. Mitrinovic and M. Vasic, Means and Their Inequalities, Springer Science & Business Media 31, 2013. $\href{https://doi.org/10.1007/978-94-017-2226-1}{[\mbox{CrossRef}]}$
- [13] I. Pinelis, L’Hospital type rules for monotonicity, with applications, J. Ineq. Pure & Appl. Math.3(1) (2002), 1-5.
- [14] R.G. Miller, Survival Analysis, John Wiley & Sons, (1997), ISBN 0-471-25218-2.
- [15] B. George, S. Seals and I. Aban, Survival analysis and regression models, J. Nucl. Cardiol., 21 (2014), 686-694. $\href{https://doi.org/10.1007%2Fs12350-014-9908-2}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84905106194&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Survival+analysis+and+regression+models%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=2}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000339956900005}{[\mbox{Web of Science}]}$
- [16] S. Karateke, M. Zontul, V.N. Mishra and A.R. Gairola, On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer
Operators, La Matematica, 3 (2024), 211–233. $\href{https://doi.org/10.1007/s44007-023-00083-w}{[\mbox{CrossRef}]}$
- [17] R.A. Chechile, Mathematical tools for hazard function analysis, J. Math. Psychol., 47(5-6) (2003), 478-494. $\href{https://doi.org/10.1016/S0022-2496(03)00063-4}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-67650450179&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Mathematical+tools+for+hazard+function+analysis%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000187348200001}{[\mbox{Web of Science}]}$
- [18] F. Emmert-Streib and M. Dehmer, Introduction to survival analysis in practice, Mach. Learn. Knowl. Extr., 1(3) (2019), 1013-1038. $\href{https://doi.org/10.3390/make1030058}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85128708055&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Introduction+to+Survival+Analysis+in+Practice%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000647029200001}{[\mbox{Web of Science}]}$