Research Article
BibTex RIS Cite

Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations

Year 2025, Volume: 8 Issue: 2, 88 - 103, 30.06.2025
https://doi.org/10.33401/fujma.1564113

Abstract

In this paper, we concentrate on the global behavior of the fuzzy difference equations system with higher order \begin{eqnarray}\nonumber \alpha_{n+1}=\tau_1+\frac{\alpha_n}{\sum_{i=1}^{m}\beta_{n-i}}, \beta_{n+1}=\tau_2+\frac{\beta_n}{\sum_{i=1}^{m}\alpha_{n-i}}, \quad n\in \mathbb{N}_0, \end{eqnarray} where $\alpha_n, \beta_n$ are positive fuzzy number sequences, parameters $\tau_1, \tau_2$ and the initial values $\alpha_{-i}, \beta_{-i}, i \in \{0, 1, \dots, m\}$, are positive fuzzy numbers. Firstly, we show the existence and uniqueness of the positive fuzzy solution to the mentioned system. Furthermore, we are searching for the boundedness, persistence and convergence of the positive solution to the given system. Finally, we give some numerical examples to show the efficiency of our results.

References

  • [1] R. DeVault, G. Ladas and S.W. Schultz, On the recursive sequence $x_{n+1}=\frac{A}{x_{n}}+\frac{1}{x_{n-2}}$, Proc. Am. Math. Soc., 126(1998), 3257-3261. $ \href{https://doi.org/10.1090/S0002-9939-98-04626-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0011873183}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000076507700018}{\mbox{[Web of Science]}} $
  • [2] R.M. Abu-Saris and R. DeVault, Global stability of $y_{n+1}=A+\frac{y_{n}}{y_n-k}$, Appl. Math. Lett., 16(2) (2003), 173-178. $ \href{https://doi.org/10.1016/S0893-9659(03)80028-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84867936459}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000181367800008}{\mbox{[Web of Science]}} $
  • [3] G. Papaschinopoulos and C.J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal., 219(2) (1998), 415-426. $ \href{https://doi.org/10.1006/jmaa.1997.5829}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0000475245}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000072521800014}{\mbox{[Web of Science]}}$
  • [4] Q. Zhang, W. Zhang, Y. Shao and J. Liu, On the system of high order rational difference equations, Int. Sch. Res. Notices, 2014(1) (2014), 760502. $ \href{http://dx.doi.org/10.1155/2014/760502}{\mbox{[CrossRef]}} $
  • [5] V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic: Dordrecht, The Netherlands, (1993). $ \href{https://doi.org/10.1007/978-94-017-1703-8}{\mbox{[CrossRef]}} $
  • [6] M.R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations: with Open Problems and Conjectures, Chapman and Hall CRC Press: Boca Raton, FL, USA. $ \href{https://doi.org/10.1201/9781420035384}{\mbox{[CrossRef]}} $
  • [7] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations Numerical Methods and Applications, Marcel Dekker, New York, (2002). $\href{https://doi.org/10.1201/9780203910290}{\mbox{[CrossRef]}} $
  • [8] S. Abualrub and M. Aloqeili, Dynamics of the System of Difference Equations $x_{n+1}=A+\frac{y_{n-k}}{y_{n}}$, $y_{n+1}=A+\frac{x_{n-k}}{x_{n}}$, Qual. Theory Dyn. Syst. 19(2) (2020), 69. $\href{ https://doi.org/10.1007/s12346-020-00408-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85087403483}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000545210700001}{\mbox{[Web of Science]}} $
  • [9] M. Gümüş, Global asymptotic behavior of a discrete system of difference equations with delays, Filomat, 37(1) (2023), 251-264. $ \href{https://doi.org/10.2298/FIL2301251G}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85146825142&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Global+asymptotic+behavior+of+a+discrete+system+of+difference+equations+with+delays%22%29&sessionSearchId=777e8879f7c059438ed77a63f94881e0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000932858000020}{\mbox{[Web of Science]}} $
  • [10] M.K. Hassani, Y. Yazlık, N. Touafek, M.S. Abdelouahab,M.B. Mesmouli and F.E. Mansour, Dynamics of a higher-order three-dimensional nonlinear system of difference equations, Math., 12(1) (2023), 1-16. $ \href{https://www.mdpi.com/2227-7390/12/1/16}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85182198367&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dynamics+of+a+Higher-Order+Three-Dimensional+Nonlinear+System+of+Difference+Equations%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001141334500001}{\mbox{[Web of Science]}} $
  • [11] Y. Zhang, X. Yang, D.J. Evans and C. Zhu, On the nonlinear difference equation system $x_{n+1}=A+\frac{y_{n-m}}{x_n}$, $y_{n+1}=A+\frac{x_{n-m}}{y_n}$, Comput. and Math. Appl., 53(10) (2007), 1561-1566. $ \href{https://doi.org/10.1016/j.camwa.2006.04.030}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34249299427&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+nonlinear+difference+equation+system%22%29&sessionSearchId=681edca36db852f79d147ab3eb4c5056}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000247791100008}{\mbox{[Web of Science]}} $
  • [12] K. Amira, and H. Yacine, Global behavior of p-dimensional difference equations system, Electron. Res. Arch., 29(5) (2021), 3121-3139. $ \href{https://doi.org/10.3934/era.2021029}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85120070532&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Global+behavior+of+p-dimensional+difference+equations+system%22%29&sessionSearchId=5b311af9b86c2e5bc51501aca444eedc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000719943100014}{\mbox{[Web of Science]}} $
  • [13] A.M. Amleh, E.A. Grove, G. Ladas and D.A. Georgiou, On the Recursive Sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$, J. Math. Anal. Appl., 233(2) (1999), 790-798. $ \href{https://doi.org/10.1006/jmaa.1999.6346}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000080268300026}{\mbox{[Web of Science]}} $
  • [14] L.A. Zadeh, Fuzzy Sets, Information Control, 8(3) (1965), 338-353. $ \href{https://doi.org/10.1016/S0019-9958(65)90241-X}{\mbox{[CrossRef]}} $
  • [15] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, London, (2013). $ \href{https://doi.org/10.1007/978-3-642-35221-8}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84892908875&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Mathematics+of+Fuzzy+Sets+and+Fuzzy+Logic%22%29&sessionSearchId=f61065db7069abf945101239e89c3df3}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000315657900015}{\mbox{[Web of Science]}} $
  • [16] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets Syst., 35(2) (1990), 241-249. $ \href{https://doi.org/10.1016/0165-0114(90)90197-E}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0001770861}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1990DB22300010}{\mbox{[Web of Science]}} $
  • [17] M.L. Puri and D.A. Ralescu, Differentials for fuzzy functions, J. Math. Anal. Appl., 91(2) (1983), 552–558. $ \href{https://doi.org/10.1016/0022-247X(83)90169-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001237908&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Differentials+of+fuzzy+functions%22%29&sessionSearchId=fd15f86d179c77b56700e70298b52cde&relpos=1}{\mbox{[Scopus]}} $
  • [18] E.Y. Deeba, A.D. Korvin and E.L. Koh, A fuzzy difference equation with an application, J. Differ. Equ. Appl., 2(4) (1996), 365-374. $ \href{https://doi.org/10.1080/10236199608808071}{\mbox{[CrossRef]}} $
  • [19] E.Y. Deeba and A. De Korvin, Analysis by fuzzy difference equations of a model of $CO_2$ level in the blood, Appl. Math. Lett., 12(3) (1999), 33-40. $ \href{https://doi.org/10.1016/S0893-9659(98)00168-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0006186928}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000078580200007}{\mbox{[Web of Science]}} $
  • [20] G. Papaschinopoulos and B.K. Papadopoulos, On the fuzzy difference equation $x_{n+1}= A+ \frac{B}{x_n}$, Fuzzy Sets Syst., 129 (2002), 73–81. $ \href{https://doi.org/0.1007/s00500-001-0161-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0036642904}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000176150400008}{\mbox{[Web of Science]}} $
  • [21] İ. Yalçınkaya, D.T. Tollu, A. Khastan, H. Ahmad and T. Botmart, Qualitative behavior of a higher-order fuzzy difference equation, AIMS Math 8(3) (2023), 6309-6322. $ \href{https://doi.org/10.3934/math.2023319}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85146166882}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000956767600002}{\mbox{[Web of Science]}} $
  • [22] Q. Zhang, M. Ouyang, B. Pan and F. Lin, Qualitative analysis of second-order fuzzy difference equation with quadratic term, J. Appl. Math. Comput., 69(2) (2023), 1355-1376. $ \href{https://doi.org/10.1007/s12190-022-01793-0}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85139135599&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Qualitative+analysis+of+second-order+fuzzy+difference+equation+with+quadratic+term%29&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000861129100001}{\mbox{[Web of Science]}} $
  • [23] S. Atpınar and Y. Yazlık, Qualitative behavior of exponential type of FDEs, J. Appl. Math. Comput., 69(1) (2023), 4135-4162. $ \href{https://doi.org/10.1007/s12190-023-01919-y}{\mbox{[CrossRef]}} $
  • [24] C. Han, L. Li, G. Su and T. Sun, Dynamical behaviors of a k-order fuzzy difference equation, Open Math. J., 20(1) (2022). 391-403. $ \href{https://doi.org/10.1515/math-2022-0020}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85129045655&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dynamical+behaviors+of+a+k-order+fuzzy+difference+equation%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000784354800001}{\mbox{[Web of Science]}} $
  • [25] E. Hatir, T. Mansour and İ. Yalçınkaya, On a fuzzy difference equation, Util. Math.,93 (2014), 135-151. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84897886636&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+fuzzy+difference+equation%22%29&sessionSearchId=a50f3bccb64f5345fd0dfeba11bc9520&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000332188500011}{\mbox{[Web of Science]}} $
  • [26] L. Jia, C. Wang, X. Zhao and W. Wei, Dynamic behavior of a fractional-type fuzzy difference system, Symmetry, 14(7) (2022), 1337. $ \href{https://doi.org/10.3390/math12010016}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85182198367}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000832221600001}{\mbox{[Web of Science]}} $
  • [27] A. Khastan and Z.Alijani, On the new solutions to the fuzzy difference equation $x_{n+1}=A+\frac{B}{x_n}$, Fuzzy Sets Syst., 358 (2019), 64-83. $ \href{https://doi.org/10.1016/j.fss.2018.03.014}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85044733326&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+new+solutions+to+the+fuzzy+difference+equation%22%29&sessionSearchId=12a664bad8d8bf2922cffa190c98326e}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000457562800004}{\mbox{[Web of Science]}} $
  • [28] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst. 161(11) (2010), 1564–1584. $\href{https://doi.org/10.1016/j.fss.2009.06.009}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-77949914993&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+generalization+of+Hukuhara+difference+and+division+for+interval+and+fuzzy+arithmetic%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000277699900005}{\mbox{[Web of Science]}} $
  • [29] İ. Yalçınkaya, H. El-Metwally, M. Bayram and D.T. Tollu, On the dynamics of a higher-order fuzzy difference equation with rational terms, Soft Comput., 27(15) (2023), 10469-10479. $ \href{https://doi.org/10.1007/s00500-023-08586-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85161446793&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+dynamics+of+a+higher-order+fuzzy+difference+equation+with+rational+terms%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001005845600008}{\mbox{[Web of Science]}} $
  • [30] İ. Yalçınkaya, H. El-Metwally, D.T. Tollu and H. Ahmad, Behavior of solutions to the fuzzy difference equation, Math. Notes, 113(1-2) (2023), 292-302. $\href{https://doi.org/10.1134/S0001434623010327}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85149978598}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000962287800032}{\mbox{[Web of Science]}} $
  • [31] Q. Zhang, F. Lin and X. Zhong, On discrete time Beverton-Holt population model with fuzzy environment, Math. Biosci. Eng., 16(3) (2019), 1471-1488. $ \href{https://doi.org/10.3934/mbe.2019071}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85062873657}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000465431200021}{\mbox{[Web of Science]}} $
  • [32] Q. Zhang, O. Miao, F. Lin and Z. Zhang, On discrete-time laser model with fuzzy environment, AIMS Math., 6(4) (2021), 3105-3120. $ \href{https://doi.org/10.3934/math.2021188}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85100166091}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000672862500002}{\mbox{[Web of Science]}} $
  • [33] Q. Zhang, M. Ouyang and Z. Zhang, On second-order fuzzy discrete population model, Open Math., 20(1) (2022), 125-139. $\href{https://doi.org/10.1515/math-2022-0018}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85128180493&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22on+second-order+fuzzy+discrete+population+model%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000777766500001}{\mbox{[Web of Science]}} $
  • [34] D. Dubois, and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Publishing Corp., New York (1998). $ \href{https://doi.org/10.1080/03081078908935040}{\mbox{[CrossRef]}} $

Year 2025, Volume: 8 Issue: 2, 88 - 103, 30.06.2025
https://doi.org/10.33401/fujma.1564113

Abstract

References

  • [1] R. DeVault, G. Ladas and S.W. Schultz, On the recursive sequence $x_{n+1}=\frac{A}{x_{n}}+\frac{1}{x_{n-2}}$, Proc. Am. Math. Soc., 126(1998), 3257-3261. $ \href{https://doi.org/10.1090/S0002-9939-98-04626-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0011873183}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000076507700018}{\mbox{[Web of Science]}} $
  • [2] R.M. Abu-Saris and R. DeVault, Global stability of $y_{n+1}=A+\frac{y_{n}}{y_n-k}$, Appl. Math. Lett., 16(2) (2003), 173-178. $ \href{https://doi.org/10.1016/S0893-9659(03)80028-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84867936459}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000181367800008}{\mbox{[Web of Science]}} $
  • [3] G. Papaschinopoulos and C.J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal., 219(2) (1998), 415-426. $ \href{https://doi.org/10.1006/jmaa.1997.5829}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0000475245}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000072521800014}{\mbox{[Web of Science]}}$
  • [4] Q. Zhang, W. Zhang, Y. Shao and J. Liu, On the system of high order rational difference equations, Int. Sch. Res. Notices, 2014(1) (2014), 760502. $ \href{http://dx.doi.org/10.1155/2014/760502}{\mbox{[CrossRef]}} $
  • [5] V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic: Dordrecht, The Netherlands, (1993). $ \href{https://doi.org/10.1007/978-94-017-1703-8}{\mbox{[CrossRef]}} $
  • [6] M.R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations: with Open Problems and Conjectures, Chapman and Hall CRC Press: Boca Raton, FL, USA. $ \href{https://doi.org/10.1201/9781420035384}{\mbox{[CrossRef]}} $
  • [7] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations Numerical Methods and Applications, Marcel Dekker, New York, (2002). $\href{https://doi.org/10.1201/9780203910290}{\mbox{[CrossRef]}} $
  • [8] S. Abualrub and M. Aloqeili, Dynamics of the System of Difference Equations $x_{n+1}=A+\frac{y_{n-k}}{y_{n}}$, $y_{n+1}=A+\frac{x_{n-k}}{x_{n}}$, Qual. Theory Dyn. Syst. 19(2) (2020), 69. $\href{ https://doi.org/10.1007/s12346-020-00408-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85087403483}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000545210700001}{\mbox{[Web of Science]}} $
  • [9] M. Gümüş, Global asymptotic behavior of a discrete system of difference equations with delays, Filomat, 37(1) (2023), 251-264. $ \href{https://doi.org/10.2298/FIL2301251G}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85146825142&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Global+asymptotic+behavior+of+a+discrete+system+of+difference+equations+with+delays%22%29&sessionSearchId=777e8879f7c059438ed77a63f94881e0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000932858000020}{\mbox{[Web of Science]}} $
  • [10] M.K. Hassani, Y. Yazlık, N. Touafek, M.S. Abdelouahab,M.B. Mesmouli and F.E. Mansour, Dynamics of a higher-order three-dimensional nonlinear system of difference equations, Math., 12(1) (2023), 1-16. $ \href{https://www.mdpi.com/2227-7390/12/1/16}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85182198367&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dynamics+of+a+Higher-Order+Three-Dimensional+Nonlinear+System+of+Difference+Equations%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001141334500001}{\mbox{[Web of Science]}} $
  • [11] Y. Zhang, X. Yang, D.J. Evans and C. Zhu, On the nonlinear difference equation system $x_{n+1}=A+\frac{y_{n-m}}{x_n}$, $y_{n+1}=A+\frac{x_{n-m}}{y_n}$, Comput. and Math. Appl., 53(10) (2007), 1561-1566. $ \href{https://doi.org/10.1016/j.camwa.2006.04.030}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34249299427&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+nonlinear+difference+equation+system%22%29&sessionSearchId=681edca36db852f79d147ab3eb4c5056}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000247791100008}{\mbox{[Web of Science]}} $
  • [12] K. Amira, and H. Yacine, Global behavior of p-dimensional difference equations system, Electron. Res. Arch., 29(5) (2021), 3121-3139. $ \href{https://doi.org/10.3934/era.2021029}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85120070532&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Global+behavior+of+p-dimensional+difference+equations+system%22%29&sessionSearchId=5b311af9b86c2e5bc51501aca444eedc}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000719943100014}{\mbox{[Web of Science]}} $
  • [13] A.M. Amleh, E.A. Grove, G. Ladas and D.A. Georgiou, On the Recursive Sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$, J. Math. Anal. Appl., 233(2) (1999), 790-798. $ \href{https://doi.org/10.1006/jmaa.1999.6346}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000080268300026}{\mbox{[Web of Science]}} $
  • [14] L.A. Zadeh, Fuzzy Sets, Information Control, 8(3) (1965), 338-353. $ \href{https://doi.org/10.1016/S0019-9958(65)90241-X}{\mbox{[CrossRef]}} $
  • [15] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, London, (2013). $ \href{https://doi.org/10.1007/978-3-642-35221-8}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84892908875&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Mathematics+of+Fuzzy+Sets+and+Fuzzy+Logic%22%29&sessionSearchId=f61065db7069abf945101239e89c3df3}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000315657900015}{\mbox{[Web of Science]}} $
  • [16] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets Syst., 35(2) (1990), 241-249. $ \href{https://doi.org/10.1016/0165-0114(90)90197-E}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0001770861}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1990DB22300010}{\mbox{[Web of Science]}} $
  • [17] M.L. Puri and D.A. Ralescu, Differentials for fuzzy functions, J. Math. Anal. Appl., 91(2) (1983), 552–558. $ \href{https://doi.org/10.1016/0022-247X(83)90169-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0001237908&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Differentials+of+fuzzy+functions%22%29&sessionSearchId=fd15f86d179c77b56700e70298b52cde&relpos=1}{\mbox{[Scopus]}} $
  • [18] E.Y. Deeba, A.D. Korvin and E.L. Koh, A fuzzy difference equation with an application, J. Differ. Equ. Appl., 2(4) (1996), 365-374. $ \href{https://doi.org/10.1080/10236199608808071}{\mbox{[CrossRef]}} $
  • [19] E.Y. Deeba and A. De Korvin, Analysis by fuzzy difference equations of a model of $CO_2$ level in the blood, Appl. Math. Lett., 12(3) (1999), 33-40. $ \href{https://doi.org/10.1016/S0893-9659(98)00168-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0006186928}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000078580200007}{\mbox{[Web of Science]}} $
  • [20] G. Papaschinopoulos and B.K. Papadopoulos, On the fuzzy difference equation $x_{n+1}= A+ \frac{B}{x_n}$, Fuzzy Sets Syst., 129 (2002), 73–81. $ \href{https://doi.org/0.1007/s00500-001-0161-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0036642904}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000176150400008}{\mbox{[Web of Science]}} $
  • [21] İ. Yalçınkaya, D.T. Tollu, A. Khastan, H. Ahmad and T. Botmart, Qualitative behavior of a higher-order fuzzy difference equation, AIMS Math 8(3) (2023), 6309-6322. $ \href{https://doi.org/10.3934/math.2023319}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85146166882}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000956767600002}{\mbox{[Web of Science]}} $
  • [22] Q. Zhang, M. Ouyang, B. Pan and F. Lin, Qualitative analysis of second-order fuzzy difference equation with quadratic term, J. Appl. Math. Comput., 69(2) (2023), 1355-1376. $ \href{https://doi.org/10.1007/s12190-022-01793-0}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85139135599&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Qualitative+analysis+of+second-order+fuzzy+difference+equation+with+quadratic+term%29&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000861129100001}{\mbox{[Web of Science]}} $
  • [23] S. Atpınar and Y. Yazlık, Qualitative behavior of exponential type of FDEs, J. Appl. Math. Comput., 69(1) (2023), 4135-4162. $ \href{https://doi.org/10.1007/s12190-023-01919-y}{\mbox{[CrossRef]}} $
  • [24] C. Han, L. Li, G. Su and T. Sun, Dynamical behaviors of a k-order fuzzy difference equation, Open Math. J., 20(1) (2022). 391-403. $ \href{https://doi.org/10.1515/math-2022-0020}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85129045655&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dynamical+behaviors+of+a+k-order+fuzzy+difference+equation%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000784354800001}{\mbox{[Web of Science]}} $
  • [25] E. Hatir, T. Mansour and İ. Yalçınkaya, On a fuzzy difference equation, Util. Math.,93 (2014), 135-151. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84897886636&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+fuzzy+difference+equation%22%29&sessionSearchId=a50f3bccb64f5345fd0dfeba11bc9520&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000332188500011}{\mbox{[Web of Science]}} $
  • [26] L. Jia, C. Wang, X. Zhao and W. Wei, Dynamic behavior of a fractional-type fuzzy difference system, Symmetry, 14(7) (2022), 1337. $ \href{https://doi.org/10.3390/math12010016}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85182198367}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000832221600001}{\mbox{[Web of Science]}} $
  • [27] A. Khastan and Z.Alijani, On the new solutions to the fuzzy difference equation $x_{n+1}=A+\frac{B}{x_n}$, Fuzzy Sets Syst., 358 (2019), 64-83. $ \href{https://doi.org/10.1016/j.fss.2018.03.014}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85044733326&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+new+solutions+to+the+fuzzy+difference+equation%22%29&sessionSearchId=12a664bad8d8bf2922cffa190c98326e}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000457562800004}{\mbox{[Web of Science]}} $
  • [28] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst. 161(11) (2010), 1564–1584. $\href{https://doi.org/10.1016/j.fss.2009.06.009}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-77949914993&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+generalization+of+Hukuhara+difference+and+division+for+interval+and+fuzzy+arithmetic%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000277699900005}{\mbox{[Web of Science]}} $
  • [29] İ. Yalçınkaya, H. El-Metwally, M. Bayram and D.T. Tollu, On the dynamics of a higher-order fuzzy difference equation with rational terms, Soft Comput., 27(15) (2023), 10469-10479. $ \href{https://doi.org/10.1007/s00500-023-08586-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85161446793&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+dynamics+of+a+higher-order+fuzzy+difference+equation+with+rational+terms%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001005845600008}{\mbox{[Web of Science]}} $
  • [30] İ. Yalçınkaya, H. El-Metwally, D.T. Tollu and H. Ahmad, Behavior of solutions to the fuzzy difference equation, Math. Notes, 113(1-2) (2023), 292-302. $\href{https://doi.org/10.1134/S0001434623010327}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85149978598}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000962287800032}{\mbox{[Web of Science]}} $
  • [31] Q. Zhang, F. Lin and X. Zhong, On discrete time Beverton-Holt population model with fuzzy environment, Math. Biosci. Eng., 16(3) (2019), 1471-1488. $ \href{https://doi.org/10.3934/mbe.2019071}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85062873657}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000465431200021}{\mbox{[Web of Science]}} $
  • [32] Q. Zhang, O. Miao, F. Lin and Z. Zhang, On discrete-time laser model with fuzzy environment, AIMS Math., 6(4) (2021), 3105-3120. $ \href{https://doi.org/10.3934/math.2021188}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85100166091}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000672862500002}{\mbox{[Web of Science]}} $
  • [33] Q. Zhang, M. Ouyang and Z. Zhang, On second-order fuzzy discrete population model, Open Math., 20(1) (2022), 125-139. $\href{https://doi.org/10.1515/math-2022-0018}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85128180493&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22on+second-order+fuzzy+discrete+population+model%22%29}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000777766500001}{\mbox{[Web of Science]}} $
  • [34] D. Dubois, and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Publishing Corp., New York (1998). $ \href{https://doi.org/10.1080/03081078908935040}{\mbox{[CrossRef]}} $
There are 34 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Osman Topan 0000-0003-0977-4777

Yasin Yazlik 0000-0001-6369-540X

Sevda Atpınar 0000-0003-2589-8331

Publication Date June 30, 2025
Submission Date October 9, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Topan, O., Yazlik, Y., & Atpınar, S. (2025). Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations. Fundamental Journal of Mathematics and Applications, 8(2), 88-103. https://doi.org/10.33401/fujma.1564113
AMA Topan O, Yazlik Y, Atpınar S. Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations. Fundam. J. Math. Appl. June 2025;8(2):88-103. doi:10.33401/fujma.1564113
Chicago Topan, Osman, Yasin Yazlik, and Sevda Atpınar. “Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations”. Fundamental Journal of Mathematics and Applications 8, no. 2 (June 2025): 88-103. https://doi.org/10.33401/fujma.1564113.
EndNote Topan O, Yazlik Y, Atpınar S (June 1, 2025) Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations. Fundamental Journal of Mathematics and Applications 8 2 88–103.
IEEE O. Topan, Y. Yazlik, and S. Atpınar, “Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations”, Fundam. J. Math. Appl., vol. 8, no. 2, pp. 88–103, 2025, doi: 10.33401/fujma.1564113.
ISNAD Topan, Osman et al. “Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations”. Fundamental Journal of Mathematics and Applications 8/2 (June2025), 88-103. https://doi.org/10.33401/fujma.1564113.
JAMA Topan O, Yazlik Y, Atpınar S. Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations. Fundam. J. Math. Appl. 2025;8:88–103.
MLA Topan, Osman et al. “Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 2, 2025, pp. 88-103, doi:10.33401/fujma.1564113.
Vancouver Topan O, Yazlik Y, Atpınar S. Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations. Fundam. J. Math. Appl. 2025;8(2):88-103.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897