Research Article
BibTex RIS Cite

A New Iterative Process Based on Almost Contraction Operators

Year 2025, Volume: 8 Issue: 3, 161 - 168, 30.09.2025
https://doi.org/10.33401/fujma.1478028

Abstract

This research article provides proof of convergence in Banach spaces for a new fixed-point iterative process constructed with two operators satisfying certain conditions. Additionally, the convergence rate of this iterative process is examined, and the obtained result is supported by numerical examples. Finally, the concept of data dependence is analyzed.

References

  • [1] V. Berinde, Iterative approximation of fixed points, Lect. Notes Math., 1912, Springer-Verlag, Berlin, (2007), 1-306. $ \href{https://doi.org/10.1007/978-3-540-72234-2}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/34247570007?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000246944200001}{\mbox{[Web of Science]}} $
  • [2] V. Karakaya, Y. Atalan, K. Doğan and N.E.H. Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18(2) (2017), 625-640. $\href{https://doi.org/10.24193/fpt-ro.2017.2.50}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85026801700?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000410718100018}{\mbox{[Web of Science]}} $
  • [3] V. Karakaya, K. Doğan, F. Gürsoy and M. Ertürk, Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces, Abstr. Appl. Anal., 2013 (2013), 1-9, 560258. $\href{https://doi.org/10.1155/2013/560258}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84897805446?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000329716200001}{\mbox{[Web of Science]}} $
  • [4] Y. Atalan and V. Karakaya, Investigation of some fixed point theorems in hyperbolic spaces for a three-step iteration process, Korean J. Math., 27(4) (2019), 929-947. $ \href{https://doi.org/10.11568/kjm.2019.27.4.929}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000504863400006}{\mbox{[Web of Science]}} $
  • [5] D.R. Sahu, M. Imdad and S. Kumar, Fixed point iteration process for nonlipschitzian nearly nonexpansive mappings, J. Indian Math. Soc., 72(1-4) (2005), 203-210. $\href{hhttps://www.informaticsjournals.co.in/index.php/jims/article/view/21832}{\mbox{[Web]}} $
  • [6] A. Panwar, R. Morwal and S. Kumar, Fixed points of r-nonexpansive mappings using MP iterative process, Adv. Theory Nonlinear Anal. Appl., 6(2) (2022), 229–245. $ \href{https://doi.org/10.31197/atnaa.980093}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85136272680?origin=resultslist}{\mbox{[Scopus]}} $
  • [7] M. Jubair, J. Ali and S. Kumar, Estimating fixed points via new iterative scheme with an application, J. Funct. Spaces, 2022(1) (2022), 3740809. $\href{https://doi.org/10.1155/2022/3740809}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85126616967?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000774653300001}{\mbox{[Web of Science]}} $
  • [8] A. Panwar, P. Lamba and S. Kumar, Some convergence results using a new iterative algorithm in CAT(0) space, Results Nonlinear Anal., 5(3) (2022) 263-272. $ \href{https://doi.org/10.53006/rna.1097678}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85141344965?origin=resultslist}{\mbox{[Scopus]}} $
  • [9] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004 (2004), 97-105. $ \href{https://doi.org/10.1155/S1687182004311058}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/33645117544?origin=resultslist}{\mbox{[Scopus]}} $
  • [10] W. Phuengrattana and S. Suantai, Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces, Thai J. Math., 11 (2013), 217–226. $ \href{https://www.scopus.com/pages/publications/84877138108?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000416698400019}{\mbox{[Web of Science]}} $
  • [11] S. Maldar, Y. Atalan and K. Doğan, Comparison rate of convergence and data dependence for a new iteration method, Tbil. Math. J., 13(4) (2020), 65–79. $\href{https://doi.org/10.32513/tbilisi/1608606050}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000603341900007}{\mbox{[Web of Science]}} $
  • [12] S. Maldar and Y. Atalan, Common fixed point theorems for complex-valued mappings with applications, Korean J. Math., 30(2) (2022), 205–229. $ \href{https://doi.org/10.11568/kjm.2022.30.2.205}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85174302571?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000822337300003}{\mbox{[Web of Science]}} $
  • [13] Y. Atalan, On numerical approach to the rate of convergence and data dependence results for a new iterative scheme, Konuralp J. Math., 7(1) (2019), 97–106. $ \href{https://dergipark.org.tr/en/download/article-file/698000}{\mbox{[Web]}} $
  • [14] F. Gürsoy, V. Karakaya and B.E. Rhoades, Data dependence results of new multi-step and S-iterative schemes for contractive-like operators, Fixed Point Theory Appl., 76 (2013), 1-12. $ \href{https://doi.org/10.1186/1687-1812-2013-76}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84884257866?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000318279000001}{\mbox{[Web of Science]}} $
  • [15] S.M. Şoltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 1-7. $ \href{https://doi.org/10.1155/2008/242916}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/48349128909?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000258041000001}{\mbox{[Web of Science]}} $
  • [16] A.K. Çopur, E. Hacıoğlu and F. Gürsoy, New insights on a pair of quasi-contractive operators in Banach spaces: Results on Jungck type iteration algorithms and proposed open problems, Math. Comput. Simulat., 215 (2024), 476-497. $ \href{https://doi.org/10.1016/j.matcom.2023.08.026}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85169795835?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001086301700001}{\mbox{[Web of Science]}} $
  • [17] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7-22. $ \href{https://www.jstor.org/stable/43996763}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/77954266270?origin=resultslist}{\mbox{[Scopus]}} $
  • [18] S.H. Khan, Common fixed points of quasi-contractive type operators by a generalized iterative process, Int. J. Appl. Math., 41(3) (2011), 260-264. $ \href{https://research.ebsco.com/c/c4wzgr/search/details/2rfumdu54b?db=asn}{\mbox{[Web]}} \href{https://www.scopus.com/pages/publications/80053543495?origin=resultslist}{\mbox{[Scopus]}} $
  • [19] X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 113(3) (1991), 727-731 $ \href{https://doi.org/10.1090/S0002-9939-1991-1086345-8}{\mbox{[CrossRef]}} $
There are 19 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Yunus Atalan 0000-0002-5912-7087

Publication Date September 30, 2025
Submission Date May 3, 2024
Acceptance Date August 6, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Atalan, Y. (2025). A New Iterative Process Based on Almost Contraction Operators. Fundamental Journal of Mathematics and Applications, 8(3), 161-168. https://doi.org/10.33401/fujma.1478028
AMA Atalan Y. A New Iterative Process Based on Almost Contraction Operators. Fundam. J. Math. Appl. September 2025;8(3):161-168. doi:10.33401/fujma.1478028
Chicago Atalan, Yunus. “A New Iterative Process Based on Almost Contraction Operators”. Fundamental Journal of Mathematics and Applications 8, no. 3 (September 2025): 161-68. https://doi.org/10.33401/fujma.1478028.
EndNote Atalan Y (September 1, 2025) A New Iterative Process Based on Almost Contraction Operators. Fundamental Journal of Mathematics and Applications 8 3 161–168.
IEEE Y. Atalan, “A New Iterative Process Based on Almost Contraction Operators”, Fundam. J. Math. Appl., vol. 8, no. 3, pp. 161–168, 2025, doi: 10.33401/fujma.1478028.
ISNAD Atalan, Yunus. “A New Iterative Process Based on Almost Contraction Operators”. Fundamental Journal of Mathematics and Applications 8/3 (September2025), 161-168. https://doi.org/10.33401/fujma.1478028.
JAMA Atalan Y. A New Iterative Process Based on Almost Contraction Operators. Fundam. J. Math. Appl. 2025;8:161–168.
MLA Atalan, Yunus. “A New Iterative Process Based on Almost Contraction Operators”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 3, 2025, pp. 161-8, doi:10.33401/fujma.1478028.
Vancouver Atalan Y. A New Iterative Process Based on Almost Contraction Operators. Fundam. J. Math. Appl. 2025;8(3):161-8.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897