Investigation on the New Numerical Soliton Solutions of FitzHugh-Nagumo Equation with Collocation Method
Year 2025,
Volume: 8 Issue: 3, 180 - 186, 30.09.2025
Derya Yıldırım Sucu
,
Seydi Battal Gazi Karakoç
,
Müjdet Güngör
Abstract
In the present paper, an accurate and reliable numerical scheme has been created for solving FitzHugh-Nagumo (F-N) equation which is a mathematical model that describes the spiking behaviorof neurons. For this, the scheme is constructed on the collocation finite element method using the septic B-spline technique. $L_{2}$ and $L_{\infty }$ error norms are computed to check the validity and reliability of the current method. Tables and graphs are used to demonstrate the effectiveness of the solutions produced. The obtained numerical results are compared with other existing numerical methods to validate the accuracy and efficiency of the proposed scheme. Numerical experiments demonstrate that our scheme provides highly accurate solutions for the F-N equation and shows highly compatible with other numerical techniques in terms of accuracy and efficiency.
References
-
[1] M.M. Meerschaert, Mathematical modeling, Academic Press, (2013). $ \href{https://shop.elsevier.com/books/mathematical-modeling/meerschaert/978-0-12-386912-8}{\mbox{[Web]}} $
-
[2] A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J.
Physiol., 117(4) (1952), 500–544. $ \href{https://doi.org/10.1113/jphysiol.1952.sp004764}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/35649001607?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1990DC78200003}{\mbox{[Web of Science]}} $
-
[3] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1(6) (1961), 445–466. $ \href{https://doi.org/10.1016/S0006-3495(61)86902-6}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/53349102813?origin=resultslist}{\mbox{[Scopus]}} $
-
[4] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50(10) (1962), 2061–2070.
$ \href{https://doi.org/10.1109/JRPROC.1962.288235}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/6344238035?origin=resultslist}{\mbox{[Scopus]}} $
-
[5] H. Li and Y. Guo, New exact solutions to the FitzHugh-Nagumo equation, Appl. Math. Comput., 180(2) (2006), 524–528. $ \href{https://doi.org/10.1016/j.amc.2005.12.035}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/33748956490?origin=resultslist}{\mbox{[Scopus]}}
$
-
[6] M. Shih, E. Momoniat and F.M. Mahomed, Approximate conditional symmetries and approximate solutions of the perturbed FitzHugh-
Nagumo equation, J. Math. Phys., 46(2) (2005), 023503. $ \href{https://doi.org/10.1063/1.1839276}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/17044384563?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000227530100020}{\mbox{[Web of Science]}} $
-
[7] D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30(1) (1978), 33–76.
$ \href{https://doi.org/10.1016/0001-8708(78)90130-5}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/49349119963?origin=resultslist}{\mbox{[Scopus]}} $
-
[8] P. Browne, E. Momoniat and F.M. Mahomed, A generalized FitzHugh-Nagumo equation, Nonlinear Anal. Theory Methods Appl., 68(4)
(2008), 1006–1015. $ \href{https://doi.org/10.1016/j.na.2006.12.001}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/36749063849?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000253439500026}{\mbox{[Web of Science]}} $
-
[9] A. Columbu, R. Diaz Fuentes and S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion
chemotaxis models with logistics, Nonlinear Anal. Real World Appl., 79 (2024), 104135. $ \href{https://doi.org/10.1016/j.nonrwa.2024.104135}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85193058384?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:001244534000001}{\mbox{[Web of Science]}} $
-
[10] T. Li, D.A. Soba Fuentes, A. Columbu and G. Viglialoro, Dissipative gradient nonlinearities prevent d-formations in local and nonlocal
attraction–repulsion chemotaxis models, Stud. Appl. Math., 154(2) (2025), e70018. $ \href{https://doi.org/10.1111/sapm.70018}{\mbox{[CrossRef]}} $
-
[11] D. Y. Sucu and S.B.G. Karakoç, A novel numerical approach for solving the Newell-Whitehead equation, Afyon Kocatepe Üniv. Fen ve Müh.
Bil. Derg., 23(6) (2023), 1428–1433. $ \href{https://doi.org/10.35414/akufemubid.1323548}{\mbox{[CrossRef]}} $
-
[12] S. Abbasbandy, Soliton solutions for the FitzHugh-Nagumo equation with the homotopy analysis method, Appl. Math. Modell., 32(12) (2008),
2706–2714. $ \href{https://doi.org/10.1016/j.apm.2007.09.019}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/50249115553?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000259785500017}{\mbox{[Web of Science]}} $
-
[13] C. Akkoyunlu, Compact finite differences method for FitzHugh-Nagumo equation, Univ. J. Math. Appl., 2(4) (2019), 180–187. $ \href{https://doi.org/10.32323/ujma.901792}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85103704342?origin=resultslist}{\mbox{[Scopus]}} $
-
[14] H. Ali, Md. Kamrujjaman and Md. Shafiqul Islam, Numerical computation of FitzHugh-Nagumo equation: a novel Galerkin finite element
approach, Int. J. Math. Res., 9(1) (2020), 20–27. $ \href{https://doi.org/10.18488/journal.24.2020.91.20.27}{\mbox{[CrossRef]}} $
-
[15] M.F. Teodoro, Numerical approximation of a nonlinear delay-advance functional differential equation by a finite element method, AIP Conf.
Proc., 1479(1) (2012), 806–809. $ \href{https://doi.org/10.1063/1.4756260}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/84883114899?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000310698100196}{\mbox{[Web of Science]}} $
-
[16] A.K.A. Khalifa, Theory and application of the collocation method with splines for ordinary and partial differential equations [Ph.D. thesis],
Heriot-Watt Univ., (1979). $ \href{http://hdl.handle.net/10399/1529}{\mbox{[Web]}} $
-
[17] A.A. Soliman, Numerical simulation of the FitzHugh-Nagumo equations, Abstr. Appl. Anal., (2012), 762516. $ \href{https://doi.org/10.1155/2012/762516}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/84866077863?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000308160400001}{\mbox{[Web of Science]}} $
-
[18] R.A. Van Gorder, Gaussian waves in the FitzHugh–Nagumo equation demonstrate one role of the auxiliary function H(x; t) in the homotopy
analysis method, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1233–1240. $\href{https://doi.org/10.1016/j.cnsns.2011.07.036}{\mbox{[CrossRef]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000296546000017}{\mbox{[Web of Science]}}
$
-
[19] S.A. Manaa, F.H. Easif and A.S. Faris, The Finite Difference Methods for FitzHugh-Nagumo Equation, IOSR J. Math. (IOSR-JM), 11(2)
(2015), 51–55. $ \href{https://d1wqtxts1xzle7.cloudfront.net/88826733/H011265155-libre.pdf?1658416966=&response-content-disposition=inline%3B+filename%3DThe_Finite_Difference_Methods_for_Fitz_H.pdf&Expires=1759171562&Signature=XjU-ZPr8mRI38RtfPa9J1~iygdNSoATo8DJfCm1FQnjHdrc0FjmPYsXJCinwYMspwkLVhZLgXoMag6iARBB6yvQ4y36A0rt59FN~uk2nw5u0332xmNGXpvQICSOXYC6Jw19e6X~DFd124QqnDoV~YdhVNMPmZtza~5ZYqhRXX5iDUOqQMOEnL~xGQC0lDwUW72H-W6VpJs6ievj62SHRvjDb8sTcITOmDT4KuUMXZzDmIHNw1D5R0yiltqNrfq68PpiNspOJU1MwOTKlqKxeECarE4Ebl~DHgM2B7SS41gbBz53cwduNvEp5srPb160D--9fp8W4ECTcSboGcMxtmw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA}{\mbox{[Web]}} $
-
[20] H. Feng and R. Lin, A finite difference method for the FitzHugh-Nagumo equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl.
Algorithms, 22 (2015), 401–412. $ \href{https://online.watsci.org/abstract_pdf/2015v22/v22n5b-pdf/4.pdf?utm_source=chatgpt.com}{\mbox{[Web]}} $
-
[21] P. Gordon, Nonsymmetric difference equations, J. Soc. Ind. Appl. Math., 13(3) (1965), 667–673.
-
[22] A.R. Gourlay, Hopscotch: A fast second-order partial differential equation solver, IMA J. Appl. Math., 6(4) (1970), 375–390. $ \href{https://doi.org/10.1093/imamat/6.4.375}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/0001518774?origin=resultslist}{\mbox{[Scopus]}} $
-
[23] A.R. Gourlay, Some recent methods for the numerical solution of time-dependent partial differential equations, Proc. R. Soc., 323 (1971),
219–235. $ \href{https://doi.org/10.1098/rspa.1971.0099}{\mbox{[CrossRef]}} $
-
[24] T. Kawahara and M. Tanaka, Interaction of travelling fronts: an exact solution of a nonlinear diffusion equation, Phys. Lett. A, 97 (1983),
311–314. $\href{https://doi.org/10.1016/0375-9601(83)90648-5}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/0001068194?origin=resultslist}{\mbox{[Scopus]}} $
-
[25] M.C. Nucci and P.A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the
FitzHugh-Nagumo equation, Phys. Lett. A, 164(1) (1992), 49–56. $ \href{https://doi.org/10.1016/0375-9601(92)90904-Z}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/0001870614?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992HP22500009}{\mbox{[Web of Science]}} $
-
[26] H. Li and Y. Guo, New exact solutions to the FitzHugh-Nagumo equation, Appl. Math. Comput., 180(2) (2006), 524–528. $ \href{https://doi.org/10.1016/j.amc.2005.12.035}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/33748956490?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000242276500010}{\mbox{[Web of Science]}} $
-
[27] A.H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized FitzHugh-Nagumo equation with time-dependent coefficients,
Appl. Math. Comput., 222 (2013), 255–264. $\href{https://doi.org/10.1016/j.amc.2013.07.056}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/84882382834?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000326877300022}{\mbox{[Web of Science]}}
$
-
[28] G. Hariharan and K. Kannan, Haar wavelet method for solving FitzHugh-Nagumo equation, Int. J. Math. Stat. Sci., 2(2) (2010), 59–63.
-
[29] Z. Chen, A.B. Gumel and R. E. Mickens, Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation, Numer. Methods
Partial Differ. Equ., 19(3) (2003), 363–379. $ \href{https://doi.org/10.1002/num.10048}{\mbox{[CrossRef]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000182230500006}{\mbox{[Web of Science]}} $
-
[30] B. Inan, K.K. Ali, A. Saha and T. Ak, Analytical and numerical solutions of the FitzHugh–Nagumo equation and their multistability behavior,
Numer. Methods Partial Differ. Equ., 37(1) (2021), 7–23. $ \href{https://www.scopus.com/pages/publications/85089199660?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000557635600001}{\mbox{[Web of Science]}} $
-
[31] A. Devi and O.P. Yadav, Higher Order Galerkin Finite Element Method for Generalized FitzHugh-Nagumo Reaction Diffusion Equation,
Numer. Heat Transf., Part B: Fundam., (2024), 1–25.
-
[32] S.B.G. Karakoç, A. Saha and D.Y. Sucu, A collocation algorithm based on septic B-splines and bifurcation of traveling waves for Sawada
Kotera equation, Math. Comput. Simul., 203 (2023), 12–27. $\href{https://doi.org/10.1016/j.matcom.2022.06.020}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85133178668?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000827406600002}{\mbox{[Web of Science]}} $
-
[33] S.B.G. Karakoç, K.K. Ali and D.Y. Sucu, A new perspective for analytical and numerical soliton solutions of the Kaup-Kupershmidt and Ito
equations, J. Comput. Appl. Math., 421 (2023), 114850. $ \href{https://doi.org/10.1016/j.cam.2022.114850}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85140137675?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000875074300011}{\mbox{[Web of Science]}} $
-
[34] P. M. Prenter, Splines and Variational Methods, Wiley-Interscience, New York, (1975).
-
[35] S.B.G. Karakoç, A. Saha, S.K. Bhowmik and D.Y. Sucu, Numerical and dynamical behaviors of nonlinear traveling wave solutions of the
Kudryashov–Sinelshchikov equation, Wave Motion, 118 (2023), 103121. $\href{https://doi.org/10.1016/j.wavemoti.2023.103121}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85147191582?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000927978400001}{\mbox{[Web of Science]}} $
-
[36] S.B.G. Karakoç and D.Y. Sucu, New exact and numerical experiments for the Caudrey-Dodd-Gibbon equation, Fundam. J. Math. Appl., 7(1)
(2024), 26-34. $ \href{https://doi.org/10.33401/fujma.1389595}{\mbox{[CrossRef]}} $
-
[37] H. Ali, M. Kamrujjaman and M.S. Islam, Numerical computation of FitzHugh-Nagumo equation: a novel Galerkin finite element approach,
Int. J. Math. Res., 9(1) (2020), 20–27. $ \href{https://doi.org/10.18488/journal.24.2020.91.20.27}{\mbox{[CrossRef]}} $