Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model
Year 2025,
Volume: 8 Issue: 3, 148 - 160, 30.09.2025
Kemal Türk
,
Mehmet Gümüş
Abstract
Cancer is a major health problem worldwide. Mathematical models play a critical role in understanding the spread of the disease and the effects of treatment. In this study, a discrete version of a cancer model is developed using the Euler method. The conditions necessary for the discretized model's solutions to be non-negative and bounded are obtained. Six different equilibria are identified, and the feasibility conditions for these equilibria are established. Furthermore, the local asymptotic stability of each equilibrium is rigorously proved. Restrictions on the time-step size $h$ were derived to ensure the validity of the results, and simulations were performed to verify the stability behavior and the influence of the time-step size. The study established essential conditions for the discretization of mathematical models so as to preserve biological relevance and dynamical consistency. Moreover, the discrete formulation offers a flexible framework for the computational analysis of cancer dynamics and has the potential to inform future research directions.
References
-
[1] K. Dietz and J.A.P. Heesterbeek, Daniel Bernoulli’s epidemiological model revisited, Math. Biosci., 180(1-2) (2002), 1–21. $\href{https://doi.org/10.1016/S0025-5564(02)00122-0}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/0036847088?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000179220600002}{\mbox{[Web of Science]}} $
-
[2] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bull. Math. Biol., 53(1-2) (1991), 33–55.
$ \href{https://doi.org/10.1016/S0092-8240(05)80040-0}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/0025985176?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1991FJ16100002}{\mbox{[Web of Science]}} $
-
[3] Q. Cui, J. Xu, Q. Zhang and K. Wang, An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy,
Adv. Differ. Equ., 2014(1) (2014), 172. $\href{https://doi.org/10.1186/1687-1847-2014-172}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/84904505000?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000342087200001}{\mbox{[Web of Science]}} $
-
[4] T. Khan, Z. Ullah, N. Ali and G. Zaman, Modeling and control of the hepatitis B virus spreading using an epidemic model, Chaos Solitons
Fractals, 124 (2019), 1–9. $ \href{https://doi.org/10.1016/j.chaos.2019.04.033}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85064639879?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000468742100001}{\mbox{[Web of Science]}} $
-
[5] M. Gümüş and K. Türk, Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme, J. Appl. Math. Comput., 70(4) (2024),
3767–3788. $ \href{https://doi.org/10.1007/s12190-024-02103-6}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85192796984?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:001221437900002}{\mbox{[Web of Science]}}
$
-
[6] M.T. Hoang, Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model, Math. Comput.
Simulat., 205 (2023), 291–314. $ \href{https://doi.org/10.1016/j.matcom.2022.10.006}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85140339998?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000879963400005}{\mbox{[Web of Science]}} $
-
[7] J. Mondal, P. Samui, and A. N. Chatterjee, Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-
19 pandemic, Eur. Phys. J. Spec. Top., 231(18), 3357-3370. $ \href{https://doi.org/10.1140/epjs/s11734-022-00437-5}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85123239001?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000744825100002}{\mbox{[Web of Science]}} $
-
[8] A.Q. Khan, M. Tasneem and M.B. Almatrafi, Discrete-time COVID-19 epidemic model with bifurcation and control, Math. Biosci. Eng.,
19(2) (2022), 1944-1969. $ \href{https://doi.org/10.3934/mbe.2022092}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85121842908?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000738623000007}{\mbox{[Web of Science]}} $
-
[9] M. Gümüş and K. Türk, A note on the dynamics of a COVID-19 epidemic model with saturated incidence rate, Eur. Phys. J. Spec. Top.,
234(8) (2025), 1751–1758. $ \href{https://doi.org/10.1140/epjs/s11734-024-01191-6}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85195969355?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:001246508300002}{\mbox{[Web of Science]}} $
-
[10] Q. Din, M. Ozair, T. Hussain and U. Saeed, Qualitative behavior of a smoking model, Adv. Differ. Equ., 2016(1) (2016), 96. $\href{https://doi.org/10.1186/s13662-016-0830-6}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/84962710221?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000373639800004}{\mbox{[Web of Science]}} $
-
[11] G. Zaman, Qualitative behavior of giving up smoking models, Bull. Malays. Math. Sci. Soc., 34(2) (2011), 403–415. $ \href{https://www.scopus.com/pages/publications/79955434499?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000290372400019}{\mbox{[Web of Science]}} $
-
[12] A. Zeb, G. Zaman and S. Momani, Square-root dynamics of a giving up smoking model, Appl. Math. Model., 37(7) (2013), 5326–5334.
$ \href{https://doi.org/10.1016/j.apm.2012.10.005}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/84872598848?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000316579600058}{\mbox{[Web of Science]}} $
-
[13] M. Aloqeili and A. Shareef, Neimark-Sacker bifurcation of a third order difference equation, Fundam. J. Math. Appl., 2(1) (2019), 40-49.
$ \href{https://doi.org/10.33401/fujma.527572}{\mbox{[CrossRef]}} $
-
[14] M.F. Ansori, A Discrete-time mathematical model of smoking dynamics with two sub-populations of smokers, J. Math. Epidemiol., 1(1)
(2025), 11-25.
-
[15] K. Türk, Mathematical modeling of Monkeypox transmission dynamics: a review, J. Math. Epidemiol., 1(1) (2025), 77–98.
-
[16] A. Gökçe, Exploring a simple stochastic mathematical model including fear with a linear functional response, Fundam. J. Math. Appl., 4(4) (2021), 280–288. $ \href{https://doi.org/10.33401/fujma.981385}{\mbox{[CrossRef]}} $
-
[17] A. Moustafid, Set-valued stabilization of reaction-diffusion model by chemotherapy and or radiotherapy, Fundam. J. Math. Appl., 6(3)
(2023), 147–156. $ \href{https://doi.org/10.33401/fujma.1299982}{\mbox{[CrossRef]}} $
-
[18] M. Martcheva, An introduction to mathematical epidemiology, Vol. 61, Springer, New York, (2015). $ \href{https://doi.org/10.1007/978-1-4899-7612-3}{\mbox{[CrossRef]}} $
-
[19] L.J.S. Allen, Introduction to mathematical biology, Pearson/Prentice Hall, New Jersey, (2007). $\href{https://books.google.com.tr/books/about/An_Introduction_to_Mathematical_Biology.html?id=e7RxQgAACAAJ&redir_esc=y}{\mbox{[Web]}} $
-
[20] D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61(8) (2001), 3501–3507. $\href{https://www.scopus.com/pages/publications/0035870287?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000168215000045}{\mbox{[Web of Science]}} $
-
[21] A. Saikh, K. Das and N.H. Gazi, A Cancer Model Study to See the Dynamical Effect of a Therapeutic Approach through Virus Injecting, J.
Appl. Nonlinear Dyn., 12(4) (2023), 739–756. $\href{https://doi.org/10.5890/JAND.2023.12.008}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85170659565?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:001072302700007}{\mbox{[Web of Science]}} $
-
[22] R.E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, (2000). $ \href{https://books.google.com.tr/books/about/Applications_of_Nonstandard_Finite_Diffe.html?id=0mrhKbrgmGUC&redir_esc=y}{\mbox{[Web]}}
$
-
[23] R.E. Mickens, Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8(9) (2002), 823–847. $ \href{https://doi.org/10.1080/1023619021000000807}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/0036744729?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000176844700005}{\mbox{[Web of Science]}} $
-
[24] T. Fayeldi, A. Suryanto and A. Widodo, Dynamical behaviors of a discrete SIR epidemic model with nonmonotone incidence rate, Int. J.
Appl. Math. Stat., 47(17) (2013), 416–423. $ \href{https://www.scopus.com/pages/publications/84887509688?origin=resultslist}{\mbox{[Scopus]}} $
-
[25] A. Suryanto and I. Darti, On the nonstandard numerical discretization of SIR epidemic model with a saturated incidence rate and vaccination,
AIMS Math, 6(1) (2021), 141-155. $\href{https://doi.org/10.3934/math.2021010}{\mbox{[CrossRef]}}
\href{https://www.scopus.com/pages/publications/85091888623?origin=resultslist}{\mbox{[Scopus]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000590361100010}{\mbox{[Web of Science]}} $
-
[26] T. Parvin, A. Islam, P.K. Mondal and M.H.A. Biswas, Discrete type SIR epidemic model with nonlinear incidence rate in presence of
immunity, WSEAS Trans. Biol. Biomed., 17 (2020), 104–118. $ \href{https://doi.org/10.37394/23208.2020.17.13}{\mbox{[CrossRef]}} $
-
[27] S. Elaydi, An Introduction to Difference Equations, Springer-Verlag, Berlin Heidelberg-New York, (1996). $\href{https://books.google.com.tr/books/about/An_Introduction_to_Difference_Equations.html?id=nPREsCQm_PYC&redir_esc=y}{\mbox{[Web]}} $