Research Article
BibTex RIS Cite

Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model

Year 2025, Volume: 8 Issue: 3, 148 - 160, 30.09.2025
https://doi.org/10.33401/fujma.1696954

Abstract

Cancer is a major health problem worldwide. Mathematical models play a critical role in understanding the spread of the disease and the effects of treatment. In this study, a discrete version of a cancer model is developed using the Euler method. The conditions necessary for the discretized model's solutions to be non-negative and bounded are obtained. Six different equilibria are identified, and the feasibility conditions for these equilibria are established. Furthermore, the local asymptotic stability of each equilibrium is rigorously proved. Restrictions on the time-step size $h$ were derived to ensure the validity of the results, and simulations were performed to verify the stability behavior and the influence of the time-step size. The study established essential conditions for the discretization of mathematical models so as to preserve biological relevance and dynamical consistency. Moreover, the discrete formulation offers a flexible framework for the computational analysis of cancer dynamics and has the potential to inform future research directions.

References

  • [1] K. Dietz and J.A.P. Heesterbeek, Daniel Bernoulli’s epidemiological model revisited, Math. Biosci., 180(1-2) (2002), 1–21. $\href{https://doi.org/10.1016/S0025-5564(02)00122-0}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0036847088?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000179220600002}{\mbox{[Web of Science]}} $
  • [2] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bull. Math. Biol., 53(1-2) (1991), 33–55. $ \href{https://doi.org/10.1016/S0092-8240(05)80040-0}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0025985176?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1991FJ16100002}{\mbox{[Web of Science]}} $
  • [3] Q. Cui, J. Xu, Q. Zhang and K. Wang, An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy, Adv. Differ. Equ., 2014(1) (2014), 172. $\href{https://doi.org/10.1186/1687-1847-2014-172}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84904505000?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000342087200001}{\mbox{[Web of Science]}} $
  • [4] T. Khan, Z. Ullah, N. Ali and G. Zaman, Modeling and control of the hepatitis B virus spreading using an epidemic model, Chaos Solitons Fractals, 124 (2019), 1–9. $ \href{https://doi.org/10.1016/j.chaos.2019.04.033}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85064639879?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000468742100001}{\mbox{[Web of Science]}} $
  • [5] M. Gümüş and K. Türk, Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme, J. Appl. Math. Comput., 70(4) (2024), 3767–3788. $ \href{https://doi.org/10.1007/s12190-024-02103-6}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85192796984?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001221437900002}{\mbox{[Web of Science]}} $
  • [6] M.T. Hoang, Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model, Math. Comput. Simulat., 205 (2023), 291–314. $ \href{https://doi.org/10.1016/j.matcom.2022.10.006}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85140339998?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000879963400005}{\mbox{[Web of Science]}} $
  • [7] J. Mondal, P. Samui, and A. N. Chatterjee, Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID- 19 pandemic, Eur. Phys. J. Spec. Top., 231(18), 3357-3370. $ \href{https://doi.org/10.1140/epjs/s11734-022-00437-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85123239001?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000744825100002}{\mbox{[Web of Science]}} $
  • [8] A.Q. Khan, M. Tasneem and M.B. Almatrafi, Discrete-time COVID-19 epidemic model with bifurcation and control, Math. Biosci. Eng., 19(2) (2022), 1944-1969. $ \href{https://doi.org/10.3934/mbe.2022092}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85121842908?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000738623000007}{\mbox{[Web of Science]}} $
  • [9] M. Gümüş and K. Türk, A note on the dynamics of a COVID-19 epidemic model with saturated incidence rate, Eur. Phys. J. Spec. Top., 234(8) (2025), 1751–1758. $ \href{https://doi.org/10.1140/epjs/s11734-024-01191-6}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85195969355?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001246508300002}{\mbox{[Web of Science]}} $
  • [10] Q. Din, M. Ozair, T. Hussain and U. Saeed, Qualitative behavior of a smoking model, Adv. Differ. Equ., 2016(1) (2016), 96. $\href{https://doi.org/10.1186/s13662-016-0830-6}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84962710221?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000373639800004}{\mbox{[Web of Science]}} $
  • [11] G. Zaman, Qualitative behavior of giving up smoking models, Bull. Malays. Math. Sci. Soc., 34(2) (2011), 403–415. $ \href{https://www.scopus.com/pages/publications/79955434499?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000290372400019}{\mbox{[Web of Science]}} $
  • [12] A. Zeb, G. Zaman and S. Momani, Square-root dynamics of a giving up smoking model, Appl. Math. Model., 37(7) (2013), 5326–5334. $ \href{https://doi.org/10.1016/j.apm.2012.10.005}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/84872598848?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000316579600058}{\mbox{[Web of Science]}} $
  • [13] M. Aloqeili and A. Shareef, Neimark-Sacker bifurcation of a third order difference equation, Fundam. J. Math. Appl., 2(1) (2019), 40-49. $ \href{https://doi.org/10.33401/fujma.527572}{\mbox{[CrossRef]}} $
  • [14] M.F. Ansori, A Discrete-time mathematical model of smoking dynamics with two sub-populations of smokers, J. Math. Epidemiol., 1(1) (2025), 11-25.
  • [15] K. Türk, Mathematical modeling of Monkeypox transmission dynamics: a review, J. Math. Epidemiol., 1(1) (2025), 77–98.
  • [16] A. Gökçe, Exploring a simple stochastic mathematical model including fear with a linear functional response, Fundam. J. Math. Appl., 4(4) (2021), 280–288. $ \href{https://doi.org/10.33401/fujma.981385}{\mbox{[CrossRef]}} $
  • [17] A. Moustafid, Set-valued stabilization of reaction-diffusion model by chemotherapy and or radiotherapy, Fundam. J. Math. Appl., 6(3) (2023), 147–156. $ \href{https://doi.org/10.33401/fujma.1299982}{\mbox{[CrossRef]}} $
  • [18] M. Martcheva, An introduction to mathematical epidemiology, Vol. 61, Springer, New York, (2015). $ \href{https://doi.org/10.1007/978-1-4899-7612-3}{\mbox{[CrossRef]}} $
  • [19] L.J.S. Allen, Introduction to mathematical biology, Pearson/Prentice Hall, New Jersey, (2007). $\href{https://books.google.com.tr/books/about/An_Introduction_to_Mathematical_Biology.html?id=e7RxQgAACAAJ&redir_esc=y}{\mbox{[Web]}} $
  • [20] D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61(8) (2001), 3501–3507. $\href{https://www.scopus.com/pages/publications/0035870287?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000168215000045}{\mbox{[Web of Science]}} $
  • [21] A. Saikh, K. Das and N.H. Gazi, A Cancer Model Study to See the Dynamical Effect of a Therapeutic Approach through Virus Injecting, J. Appl. Nonlinear Dyn., 12(4) (2023), 739–756. $\href{https://doi.org/10.5890/JAND.2023.12.008}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85170659565?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001072302700007}{\mbox{[Web of Science]}} $
  • [22] R.E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, (2000). $ \href{https://books.google.com.tr/books/about/Applications_of_Nonstandard_Finite_Diffe.html?id=0mrhKbrgmGUC&redir_esc=y}{\mbox{[Web]}} $
  • [23] R.E. Mickens, Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8(9) (2002), 823–847. $ \href{https://doi.org/10.1080/1023619021000000807}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/0036744729?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000176844700005}{\mbox{[Web of Science]}} $
  • [24] T. Fayeldi, A. Suryanto and A. Widodo, Dynamical behaviors of a discrete SIR epidemic model with nonmonotone incidence rate, Int. J. Appl. Math. Stat., 47(17) (2013), 416–423. $ \href{https://www.scopus.com/pages/publications/84887509688?origin=resultslist}{\mbox{[Scopus]}} $
  • [25] A. Suryanto and I. Darti, On the nonstandard numerical discretization of SIR epidemic model with a saturated incidence rate and vaccination, AIMS Math, 6(1) (2021), 141-155. $\href{https://doi.org/10.3934/math.2021010}{\mbox{[CrossRef]}} \href{https://www.scopus.com/pages/publications/85091888623?origin=resultslist}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000590361100010}{\mbox{[Web of Science]}} $
  • [26] T. Parvin, A. Islam, P.K. Mondal and M.H.A. Biswas, Discrete type SIR epidemic model with nonlinear incidence rate in presence of immunity, WSEAS Trans. Biol. Biomed., 17 (2020), 104–118. $ \href{https://doi.org/10.37394/23208.2020.17.13}{\mbox{[CrossRef]}} $
  • [27] S. Elaydi, An Introduction to Difference Equations, Springer-Verlag, Berlin Heidelberg-New York, (1996). $\href{https://books.google.com.tr/books/about/An_Introduction_to_Difference_Equations.html?id=nPREsCQm_PYC&redir_esc=y}{\mbox{[Web]}} $
There are 27 citations in total.

Details

Primary Language English
Subjects Biological Mathematics
Journal Section Articles
Authors

Kemal Türk 0000-0003-4079-4207

Mehmet Gümüş 0000-0002-7447-479X

Publication Date September 30, 2025
Submission Date May 10, 2025
Acceptance Date September 28, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Türk, K., & Gümüş, M. (2025). Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model. Fundamental Journal of Mathematics and Applications, 8(3), 148-160. https://doi.org/10.33401/fujma.1696954
AMA Türk K, Gümüş M. Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model. Fundam. J. Math. Appl. September 2025;8(3):148-160. doi:10.33401/fujma.1696954
Chicago Türk, Kemal, and Mehmet Gümüş. “Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model”. Fundamental Journal of Mathematics and Applications 8, no. 3 (September 2025): 148-60. https://doi.org/10.33401/fujma.1696954.
EndNote Türk K, Gümüş M (September 1, 2025) Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model. Fundamental Journal of Mathematics and Applications 8 3 148–160.
IEEE K. Türk and M. Gümüş, “Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model”, Fundam. J. Math. Appl., vol. 8, no. 3, pp. 148–160, 2025, doi: 10.33401/fujma.1696954.
ISNAD Türk, Kemal - Gümüş, Mehmet. “Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model”. Fundamental Journal of Mathematics and Applications 8/3 (September2025), 148-160. https://doi.org/10.33401/fujma.1696954.
JAMA Türk K, Gümüş M. Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model. Fundam. J. Math. Appl. 2025;8:148–160.
MLA Türk, Kemal and Mehmet Gümüş. “Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 3, 2025, pp. 148-60, doi:10.33401/fujma.1696954.
Vancouver Türk K, Gümüş M. Stability Analysis and Simulations of the Discrete-Time Cancer Epidemic Model. Fundam. J. Math. Appl. 2025;8(3):148-60.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897