Araştırma Makalesi
BibTex RIS Kaynak Göster

Classification of Alzheimer's and Parkinson's Diseases Using Deep Learning Techniques

Yıl 2023, , 473 - 482, 01.09.2023
https://doi.org/10.35234/fumbd.1234638

Öz

The use of computer-aided devices and systems in the field of health has become quite widespread. These devices and systems contributed to faster and earlier diagnosis of diseases. Especially imaging devices such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) play a major role in diseases where early diagnosis is important. In neurological diseases, the use of MRI and CT images as input images in deep learning models is becoming increasingly common. In this study, MRI images from the "Alzheimer's Parkinson's 3 Class Data Set" dataset obtained from the Kaggle website were used to diagnose Alzheimer's and Parkinson's diseases. There are three classes in this data set: 2561 Alzheimer's, 906 Parkinson's and 3010 Control (Normal). In this study, when Alzheimer's Parkinson's and Normal classes were trained with ResNet-18, VGG-16 and ConvNext architecture, accuracy rates of 96.2%, 95.4% and 98.9% were obtained respectively. In addition, Alzheimer's and Parkinson's diseases were tested with binary classifiers on the normal class. Among the models trained for Alzheimer's - Normal and Parkinson's - Normal classes, ResNet-18 architecture achieved 82.0% and 96.1%, VGG-16 architecture achieved 95.4% and 89.4%, and ConvNext architecture achieved 99.4% and 99.5% success rates, respectively.

Kaynakça

  • Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. The Lancet, 386(9996), 896-912.
  • Wang, X., Zheng, W., Xie, J., & Wang, T. (2019). Neuroinflammation-mediated microglial activation in Alzheimer's disease and Parkinson's disease. Progress in Neurobiology, 179, 1-19.
  • Grover, S., Bhartia, S., Yadav, A., & Seeja, K. R. (2018). Predicting severity of Parkinson’s disease using deep learning. Procedia computer science, 132, 1788-1794.
  • Wroge, T. J., Özkanca, Y., Demiroglu, C., Si, D., Atkins, D. C., & Ghomi, R. H. (2018, December). Parkinson’s disease diagnosis using machine learning and voice. In 2018 IEEE signal processing in medicine and biology symposium (SPMB) (pp. 1-7). IEEE.
  • Mei, J., Desrosiers, C., & Frasnelli, J. (2021). Machine learning for the diagnosis of Parkinson's disease: a review of literature. Frontiers in aging neuroscience, 13, 633752.
  • Caliskan, A., Badem, H., Basturk, A., & YUKSEL, M. (2017). Diagnosis of the parkinson disease by using deep neural network classifier. IU-Journal of Electrical & Electronics Engineering, 17(2), 3311-3318.
  • Alzheimer’s Disease Fact Sheet. (t.y.). National Institute on Aging. Geliş tarihi 31 Mart 2023, gönderen https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
  • Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., & Feng, D. (2014, April). Early diagnosis of Alzheimer's disease with deep learning. In 2014 IEEE 11th international symposium on biomedical imaging (ISBI) (pp. 1015-1018). IEEE.
  • Helaly, H. A., Badawy, M., & Haikal, A. Y. (2022). Deep learning approach for early detection of Alzheimer’s disease. Cognitive computation, 14(5), 1711-1727.
  • Alzheimer’s Disease International. (2022) [Online]. Avaible: https://www.alzint.org/
  • Demyanchuk, A., Pushkina, E., Russkikh, N., Shtokalo, D., & Mishinov, S. (2019). Hydrocephalus verification on brain magnetic resonance images with deep convolutional neural networks and" transfer learning" technique. arXiv preprint arXiv:1909.10473.
  • Gokul Ramasamy (2019). "Parkinson’s Disease Detection". Kaggle. https://www.kaggle.com/gokulramesh/parkinsons-disease-detection
  • Yu, X., & Wang, S. H. (2019). Abnormality diagnosis in mammograms by transfer learning based on ResNet18. Fundamenta Informaticae, 168(2-4), 219-230.
  • Khan, H. A., Jue, W., Mushtaq, M., & Mushtaq, M. U. (2020). Brain tumor classification in MRI image using convolutional neural network. Math. Biosci. Eng, 17(5), 6203-6216.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning. Image Recognition, 7.
  • Tammina, S. (2019). Transfer learning using vgg-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications (IJSRP), 9(10), 143-150.
  • Simonyan, K., & Zisserman, A. (2015). "Very deep convolutional networks for large-scale image recognition". In International Conference on Learning Representations (ICLR).
  • Sharma, S., Guleria, K., Tiwari, S., & Kumar, S. (2022). A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans. Measurement: Sensors, 24, 100506.
  • Liu, Z., Mao, H., Wu, C. Y., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11976-11986).
  • Zhai, X., Kolesnikov, A., Houlsby, N., & Beyer, L. (2022). Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12104-12113).
  • Beyer, L., Zhai, X., & Kolesnikov, A. (2022). Better plain ViT baselines for ImageNet-1k. arXiv preprint arXiv:2205.01580.
  • Yang, Z., Qiu, Z., & Xie, H. (2022). An Image Classification Method Based on Self-attention ConvNeXt. In International Conference on Computer Engineering and Networks (pp. 657-666). Springer, Singapore.
  • “ADNI | Alzheimer’s Disease Neuroimaging Initiative”. Erişim 6 Ocak 2022. https://adni.loni.usc.edu/.
  • Marcus, Daniel S., Anthony F. Fotenos, John G. Csernansky, John C. Morris, ve Randy L. Buckner. “Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults”. Journal of Cognitive Neuroscience 22, sy 12 (01 Aralık 2010): 2677-84. https://doi.org/10.1162/jocn.2009.21407.

Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması

Yıl 2023, , 473 - 482, 01.09.2023
https://doi.org/10.35234/fumbd.1234638

Öz

Bilgisayar destekli cihazların ve sistemlerin sağlık alanında kullanımı oldukça yaygınlaşmıştır. Bu cihaz ve sistemlerin hastalıkların daha hızlı ve erken teşhisine katkısı yüksekti. Özellikle Manyetik Rezonans Görüntüleme (MRI), Bilgisayarlı Tomografi (BT) gibi görüntüleme cihazları; erken teşhisin önemli olduğu hastalıklar özelinde oldukça büyük bir rol oynamaktadır. Nörolojik hastalıklarda da MR ve BT görüntülerinin derin öğrenme modellerinde girdi görüntüsü olarak kullanımı giderek yaygınlaşmaktadır. Bu çalışmada Kaggle sitesi üzerinden elde edilen Alzheimer ve Parkinson hastalıkları teşhisi için “Alzheimer Parkinson 3 Class Data Set” veri setindeki MRI görüntüleri kullanılmıştır. Bu veri seti içerisinde 2561 Alzheimer, 906 Parkinson ve 3010 adet Kontrol (Normal) olmak üzere üç sınıf bulunmaktadır. Bu çalışmada; Alzheimer, Parkinson ve Normal sınıfları, ResNet-18, VGG-16 ve ConvNext mimarisi ile eğitildiğinde sırasıyla %96,2, %95,4 ve %98,9 doğruluk oranı elde edilmiştir. Bunun yanında; Alzheimer ve Parkinson hastalıkları normal sınıfı üzerinde ikili sınıflandırıcılar ile test edilmiştir. Alzheimer- Normal ve Parkinson – Normal sınıfları için eğitilen modellerden ResNet-18 mimarisi sırası ile %82,0 ve %96,1, VGG-16 mimarisi sırası ile %95,4 ve %89,4, ConvNext mimarisi ise %99,4 ve %99,5 başarı oranlarına ulaşılmıştır.

Kaynakça

  • Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. The Lancet, 386(9996), 896-912.
  • Wang, X., Zheng, W., Xie, J., & Wang, T. (2019). Neuroinflammation-mediated microglial activation in Alzheimer's disease and Parkinson's disease. Progress in Neurobiology, 179, 1-19.
  • Grover, S., Bhartia, S., Yadav, A., & Seeja, K. R. (2018). Predicting severity of Parkinson’s disease using deep learning. Procedia computer science, 132, 1788-1794.
  • Wroge, T. J., Özkanca, Y., Demiroglu, C., Si, D., Atkins, D. C., & Ghomi, R. H. (2018, December). Parkinson’s disease diagnosis using machine learning and voice. In 2018 IEEE signal processing in medicine and biology symposium (SPMB) (pp. 1-7). IEEE.
  • Mei, J., Desrosiers, C., & Frasnelli, J. (2021). Machine learning for the diagnosis of Parkinson's disease: a review of literature. Frontiers in aging neuroscience, 13, 633752.
  • Caliskan, A., Badem, H., Basturk, A., & YUKSEL, M. (2017). Diagnosis of the parkinson disease by using deep neural network classifier. IU-Journal of Electrical & Electronics Engineering, 17(2), 3311-3318.
  • Alzheimer’s Disease Fact Sheet. (t.y.). National Institute on Aging. Geliş tarihi 31 Mart 2023, gönderen https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
  • Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., & Feng, D. (2014, April). Early diagnosis of Alzheimer's disease with deep learning. In 2014 IEEE 11th international symposium on biomedical imaging (ISBI) (pp. 1015-1018). IEEE.
  • Helaly, H. A., Badawy, M., & Haikal, A. Y. (2022). Deep learning approach for early detection of Alzheimer’s disease. Cognitive computation, 14(5), 1711-1727.
  • Alzheimer’s Disease International. (2022) [Online]. Avaible: https://www.alzint.org/
  • Demyanchuk, A., Pushkina, E., Russkikh, N., Shtokalo, D., & Mishinov, S. (2019). Hydrocephalus verification on brain magnetic resonance images with deep convolutional neural networks and" transfer learning" technique. arXiv preprint arXiv:1909.10473.
  • Gokul Ramasamy (2019). "Parkinson’s Disease Detection". Kaggle. https://www.kaggle.com/gokulramesh/parkinsons-disease-detection
  • Yu, X., & Wang, S. H. (2019). Abnormality diagnosis in mammograms by transfer learning based on ResNet18. Fundamenta Informaticae, 168(2-4), 219-230.
  • Khan, H. A., Jue, W., Mushtaq, M., & Mushtaq, M. U. (2020). Brain tumor classification in MRI image using convolutional neural network. Math. Biosci. Eng, 17(5), 6203-6216.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning. Image Recognition, 7.
  • Tammina, S. (2019). Transfer learning using vgg-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications (IJSRP), 9(10), 143-150.
  • Simonyan, K., & Zisserman, A. (2015). "Very deep convolutional networks for large-scale image recognition". In International Conference on Learning Representations (ICLR).
  • Sharma, S., Guleria, K., Tiwari, S., & Kumar, S. (2022). A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans. Measurement: Sensors, 24, 100506.
  • Liu, Z., Mao, H., Wu, C. Y., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11976-11986).
  • Zhai, X., Kolesnikov, A., Houlsby, N., & Beyer, L. (2022). Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12104-12113).
  • Beyer, L., Zhai, X., & Kolesnikov, A. (2022). Better plain ViT baselines for ImageNet-1k. arXiv preprint arXiv:2205.01580.
  • Yang, Z., Qiu, Z., & Xie, H. (2022). An Image Classification Method Based on Self-attention ConvNeXt. In International Conference on Computer Engineering and Networks (pp. 657-666). Springer, Singapore.
  • “ADNI | Alzheimer’s Disease Neuroimaging Initiative”. Erişim 6 Ocak 2022. https://adni.loni.usc.edu/.
  • Marcus, Daniel S., Anthony F. Fotenos, John G. Csernansky, John C. Morris, ve Randy L. Buckner. “Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults”. Journal of Cognitive Neuroscience 22, sy 12 (01 Aralık 2010): 2677-84. https://doi.org/10.1162/jocn.2009.21407.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm MBD
Yazarlar

Esra Yüzgeç 0000-0003-2914-2603

Muhammed Talo 0000-0002-1595-5681

Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 15 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yüzgeç, E., & Talo, M. (2023). Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 473-482. https://doi.org/10.35234/fumbd.1234638
AMA Yüzgeç E, Talo M. Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2023;35(2):473-482. doi:10.35234/fumbd.1234638
Chicago Yüzgeç, Esra, ve Muhammed Talo. “Alzheimer Ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, sy. 2 (Eylül 2023): 473-82. https://doi.org/10.35234/fumbd.1234638.
EndNote Yüzgeç E, Talo M (01 Eylül 2023) Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 2 473–482.
IEEE E. Yüzgeç ve M. Talo, “Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 2, ss. 473–482, 2023, doi: 10.35234/fumbd.1234638.
ISNAD Yüzgeç, Esra - Talo, Muhammed. “Alzheimer Ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/2 (Eylül 2023), 473-482. https://doi.org/10.35234/fumbd.1234638.
JAMA Yüzgeç E, Talo M. Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:473–482.
MLA Yüzgeç, Esra ve Muhammed Talo. “Alzheimer Ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 2, 2023, ss. 473-82, doi:10.35234/fumbd.1234638.
Vancouver Yüzgeç E, Talo M. Alzheimer ve Parkinson Hastalıklarının Derin Öğrenme Teknikleri Kullanılarak Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(2):473-82.