Araştırma Makalesi
BibTex RIS Kaynak Göster

Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi

Yıl 2023, , 883 - 890, 01.09.2023
https://doi.org/10.35234/fumbd.1291753

Öz

Enerji krizleri, fosil yakıtların yakın gelecekte tükenecek olması ve sera gazı etkisi dünyanın en büyük sorunları arasında yer almaktadır. Bu sorunlara çözüm noktasında güneş enerjisi teknolojileri ön plana çıkmaktadır. 3. nesil güneş pili teknolojileri arasında yer alan boya duyarlı güneş pilleri (BDGP) üzerinde yoğun araştırmalar yapılmaktadır. BDGP’lerin verimleri silisyum tabanlı güneş pillerine kıyasla daha düşük olmasına rağmen hassaslaştırıcı boyada yapılacak değişikliklerle bu hücrelerin performansları geliştirilebilir. Bu çalışmada acı meyan (Sophora alopecuroides) bitkisinin çiçek, tohum ve yaprak kısımlarından ekstrakte edilmiş boyalarla duyarlılaştırılmış BDGP’lerin fotovoltaik performansları araştırıldı. Fotoanot katmanı oluşturan titanyum dioksit’in (TiO2) minerolojik ve morfolojik analizleri X-ışını difraksiyonu (XRD) ve taramalı elektron mikroskobu (SEM) ile gerçekleştirildi. XRD sonuçları TiO2’nin anataz fazını ve kristal yapısını doğruladı. SEM görüntüleri birbirine sıkıca paketlenmiş mikro kürecik yapının varlığını ortaya çıkardı. Üretilen BDGP’ler arasında en yüksek hücre verimini 0.057 ile fotoanodu yaprak boyasıyla duyarlılaştırılmış hücre gösterdi.

Kaynakça

  • Hernandez RR, Hoffacker MK, Field CB. Efficient use of land to meet sustainable energy needs. Nat Clim Change 2015; 5: 353–358.
  • Zatirostami A. A dramatic improvement in the efficiency of TiO2-based DSSCs by simultaneous incorporation of Cu and Se into its lattice. Opt Mater 2021; 117: 111110.
  • Parisi ML, Maranghi S, Basosi R. The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach. Renewable Sustainable Energy Rev 2014; 39: 124–138.
  • Chu L, Qin Z, Zhang Q, Chen W, Yeng J, Yang J, Li X. Mesoporous anatase TiO2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells. Appl Surf Sci 2016; 360: 634–640.
  • Li H, Zheng B, Xue Y, Liu S, Gao C, Liu X. Spray deposited lanthanum doped TiO2 compact layers as electron selective contact for perovskite solar cells. Sol Energy Mater Sol Cells 2017; 168: 85–90.
  • Arı DA, Sezgin A, Unal M, Akman E, Yavuz I, Liang FC, Yılmaz M, Akın S. Desing of an amorphous ZnWSe2 alloy-based counter electrode for highly efficient dye-sensitized solar cells. Mater Chem Front 2023; 10: 1039.
  • Tolu MC, Carbas BB, Sonmezoğlu S. Cost-effective polythiophene counter electrodes for dye-sensitized solar cells. E3S web of conferences; 2016; Russia. 1-3.
  • Ludin NA, Mahmoud AM, Bakar A, Kadhum AH, Sopian K, Karim NS. Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable Sustainable Energy Rev 2014; 31: 386–396.
  • Shalini S, Prabhu R, Prasanna S, Mallick TK, Senthilarasu S. Review on natural dye sensitized solar cells: Operation, materials and methods, Renewable Sustainable Energy Rev 2015; 51: 1306–1325.
  • Durmaz H, Hulul M, Celik H. Meyan (Glycyrrhiza glabra L.) bitkisinin antibakteriyel ve antioksidan aktiviteleri. Harran Üniversitesi Veteriner Fakültesi Dergisi 2018; 7: 37–41.
  • Liang L, Liu Y, Bu C, Guo K, Sun W, Huang N, Peng T, Sebo B, et al. Highly uniform, bifunctional core/double-shell-structured β-NaYF 4:Er3+, Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cell. Adv Mater 2013; 25: 2174–2180.
  • Ansari AA, Sumana G, Pandey MK, Malhotra BD. Sol-gel-derived titanium oxide-cerium oxide biocompatible nanocomposite film for urea sensor. J Mater Res 2009; 24: 1667–1673.
  • Xu Z, Quintanilla M, Vetrone F, Govorov AO, Chaker M, Ma D. Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv Funct Mater 2015; 25: 2950–2960.
  • Nelson J, Chandler RE. Random walk models of charge transfer and transport in dye sensitized systems. Coord Chem Rev 2004; 248: 1181–1194.
  • Fouad H, Ansari SG, Khan AA, Ansari ZA. Europium doped TiO2: an efficient photoanode material for dye sensitized solar cell. J Mater Sci-Mater Electron 2017; 28: 6873–6879.
  • Kumar K, Manonmani J, Senthilselvan J. Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. J Mater Sci-Mater Electron 2014; 25: 5296–5301.
  • Omar A, Ali MS, Rahim N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol Energy 2020; 207: 1088–1121.
  • Hamadanian M, Jabbari V, Gravand A, Asad M. Band gap engineering of TiO2 nanostructure-based dye solar cells (DSSCs) fabricated via electrophoresis. Surf Coat Technol 2012; 206: 4531–4538.
  • Lin L, Peng B, Shi W, Guo Y, Li R. Synthesis of zinc phthalocyanine with large steric hindrance and its photovoltaic performance for dye-sensitized solar cells. Dalton Trans 2015; 44: 5867–5874.
  • Maurya I, Singh S, Srivastava P, Maiti B, Bahadur L. Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: Experimental and density functional theory studies. Opt Mater 2019; 90: 273–280.
  • Lohrasbi M, Pattanapanishsawat P, Isenberg M, Chuang SC. Degradation study of dye-sensitized solar cells by electrochemical impedance and FTIR spectroscopy. IEEE Energytech; 2013; Cleveland-USA. 1–4.

The effect of flower, seed and leaf extracts of Sophora alopecuroides plant on the performance of dye sensitive solar cells

Yıl 2023, , 883 - 890, 01.09.2023
https://doi.org/10.35234/fumbd.1291753

Öz

Energy crises, the depletion of fossil fuels in the near future and the greenhouse effect are among the biggest problems in the world. Solar energy technologies come to the fore at the point of solution to these problems. Intensive research is being carried out on dye-sensitized solar cells (DSSCs), which is among the 3rd generation solar cell technologies. Although the efficiencies of DSSCs are lower than silicon-based solar cells, the performance of these cells can be improved with changes in the sensitizing. In this study, it was investigated how dyes obtained from the flower, seed and leaf parts of Sophora alopecuroides affect the efficiency of DSSCs. Mineralogical and morphological analyzes of titanium dioxide (TiO2) forming the photoanode layer were performed with X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD results confirmed the anatase phase and microcrystalline structure of TiO2. SEM images revealed the presence of tightly packed microspheres. Among the DSSCs produced, the cell sensitized with photoanode leaf dye showed the highest cell efficiency with 0.057.

Kaynakça

  • Hernandez RR, Hoffacker MK, Field CB. Efficient use of land to meet sustainable energy needs. Nat Clim Change 2015; 5: 353–358.
  • Zatirostami A. A dramatic improvement in the efficiency of TiO2-based DSSCs by simultaneous incorporation of Cu and Se into its lattice. Opt Mater 2021; 117: 111110.
  • Parisi ML, Maranghi S, Basosi R. The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach. Renewable Sustainable Energy Rev 2014; 39: 124–138.
  • Chu L, Qin Z, Zhang Q, Chen W, Yeng J, Yang J, Li X. Mesoporous anatase TiO2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells. Appl Surf Sci 2016; 360: 634–640.
  • Li H, Zheng B, Xue Y, Liu S, Gao C, Liu X. Spray deposited lanthanum doped TiO2 compact layers as electron selective contact for perovskite solar cells. Sol Energy Mater Sol Cells 2017; 168: 85–90.
  • Arı DA, Sezgin A, Unal M, Akman E, Yavuz I, Liang FC, Yılmaz M, Akın S. Desing of an amorphous ZnWSe2 alloy-based counter electrode for highly efficient dye-sensitized solar cells. Mater Chem Front 2023; 10: 1039.
  • Tolu MC, Carbas BB, Sonmezoğlu S. Cost-effective polythiophene counter electrodes for dye-sensitized solar cells. E3S web of conferences; 2016; Russia. 1-3.
  • Ludin NA, Mahmoud AM, Bakar A, Kadhum AH, Sopian K, Karim NS. Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable Sustainable Energy Rev 2014; 31: 386–396.
  • Shalini S, Prabhu R, Prasanna S, Mallick TK, Senthilarasu S. Review on natural dye sensitized solar cells: Operation, materials and methods, Renewable Sustainable Energy Rev 2015; 51: 1306–1325.
  • Durmaz H, Hulul M, Celik H. Meyan (Glycyrrhiza glabra L.) bitkisinin antibakteriyel ve antioksidan aktiviteleri. Harran Üniversitesi Veteriner Fakültesi Dergisi 2018; 7: 37–41.
  • Liang L, Liu Y, Bu C, Guo K, Sun W, Huang N, Peng T, Sebo B, et al. Highly uniform, bifunctional core/double-shell-structured β-NaYF 4:Er3+, Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cell. Adv Mater 2013; 25: 2174–2180.
  • Ansari AA, Sumana G, Pandey MK, Malhotra BD. Sol-gel-derived titanium oxide-cerium oxide biocompatible nanocomposite film for urea sensor. J Mater Res 2009; 24: 1667–1673.
  • Xu Z, Quintanilla M, Vetrone F, Govorov AO, Chaker M, Ma D. Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv Funct Mater 2015; 25: 2950–2960.
  • Nelson J, Chandler RE. Random walk models of charge transfer and transport in dye sensitized systems. Coord Chem Rev 2004; 248: 1181–1194.
  • Fouad H, Ansari SG, Khan AA, Ansari ZA. Europium doped TiO2: an efficient photoanode material for dye sensitized solar cell. J Mater Sci-Mater Electron 2017; 28: 6873–6879.
  • Kumar K, Manonmani J, Senthilselvan J. Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. J Mater Sci-Mater Electron 2014; 25: 5296–5301.
  • Omar A, Ali MS, Rahim N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol Energy 2020; 207: 1088–1121.
  • Hamadanian M, Jabbari V, Gravand A, Asad M. Band gap engineering of TiO2 nanostructure-based dye solar cells (DSSCs) fabricated via electrophoresis. Surf Coat Technol 2012; 206: 4531–4538.
  • Lin L, Peng B, Shi W, Guo Y, Li R. Synthesis of zinc phthalocyanine with large steric hindrance and its photovoltaic performance for dye-sensitized solar cells. Dalton Trans 2015; 44: 5867–5874.
  • Maurya I, Singh S, Srivastava P, Maiti B, Bahadur L. Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: Experimental and density functional theory studies. Opt Mater 2019; 90: 273–280.
  • Lohrasbi M, Pattanapanishsawat P, Isenberg M, Chuang SC. Degradation study of dye-sensitized solar cells by electrochemical impedance and FTIR spectroscopy. IEEE Energytech; 2013; Cleveland-USA. 1–4.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotovoltaik Cihazlar (Güneş Pilleri)
Bölüm MBD
Yazarlar

Fehmi Aslan 0000-0002-5304-0503

Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 3 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aslan, F. (2023). Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 883-890. https://doi.org/10.35234/fumbd.1291753
AMA Aslan F. Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2023;35(2):883-890. doi:10.35234/fumbd.1291753
Chicago Aslan, Fehmi. “Acı Meyan Bitkisinin çiçek, Tohum Ve yapraklarından Ekstrakte Edilen boyaların BDGP’lerin performansına Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, sy. 2 (Eylül 2023): 883-90. https://doi.org/10.35234/fumbd.1291753.
EndNote Aslan F (01 Eylül 2023) Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 2 883–890.
IEEE F. Aslan, “Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 2, ss. 883–890, 2023, doi: 10.35234/fumbd.1291753.
ISNAD Aslan, Fehmi. “Acı Meyan Bitkisinin çiçek, Tohum Ve yapraklarından Ekstrakte Edilen boyaların BDGP’lerin performansına Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/2 (Eylül 2023), 883-890. https://doi.org/10.35234/fumbd.1291753.
JAMA Aslan F. Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:883–890.
MLA Aslan, Fehmi. “Acı Meyan Bitkisinin çiçek, Tohum Ve yapraklarından Ekstrakte Edilen boyaların BDGP’lerin performansına Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 35, sy. 2, 2023, ss. 883-90, doi:10.35234/fumbd.1291753.
Vancouver Aslan F. Acı meyan bitkisinin çiçek, tohum ve yapraklarından ekstrakte edilen boyaların BDGP’lerin performansına etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(2):883-90.