MgB2bulks were synthesized by the Mg diffusion method under exactly the same conditions, using B powder of three different purities purified in Turkey. In laboratory scale studies, high purity starting powders are used. For large-scale production, low purity powders are better in terms of production costs. In this study, the effect of low purity grade B on the Mg diffusion method was examined. The microstructural properties of MgB2 samples produced by heat treatment at 850 °C for 10 hours were examined by XRD analysis. Rietveld refinement was performed on these results, and lattice parameters were obtained around a=b=3.08 Å, c=3.52 Å. Crystal sizes and microstrains were calculated using the Scherrer and Williamson-Hall formulas. In addition, by magnetic measurements, the Tc was determined to be 38.74 K, and the Jc (B = 0) at 20 K was determined to be 3.14x105 A/cm2 for the sample using an 86.70% purity B source. Fp was calculated, and pinning mechanisms were examined using the Dew-Hughes scaling approach. The dominant pinning mechanism was determined to be grain boundaries and non-superconducting points. It has been shown that high Jc and Tc values, which are important for relevant technologies, can be achieved with the 86.70% purity of the B source purified in Turkey.
I declare that this work is an original work, the idea of the work belongs to me, all experimental studies were carried out by me with the support of TÜBİTAK 2219, all stages of data collection, analysis and presentation of information have been carried out by me in accordance with the principles and rules of scientific ethics, I have cited all data and information not obtained within the scope of this study and that I have included these sources in the bibliography.
Destekleyen Kurum
TUBITAK
Proje Numarası
TÜBİTAK’ın 2219-Yurt Dışı Doktora Sonrası Araştırma Burs Programı
Teşekkür
It was prepared from the results of the study conducted with the support of TÜBİTAK's 2219-Overseas Postdoctoral Research Scholarship Program. I would like to thank TÜBİTAK for this support.
Kaynakça
Nagamatsu, J, Nakagawa, N, Muranaka, T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature 2001; 410: 63-64. https://doi.org/10.1038/35065039
Barua S, Hossain MSA, Ma Z, Patel D, Mustapic M, Somer M, Acar S, Kokal I ve diğerleri. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scripta Materialia 2015; 104: 37-40. https://doi.org/10.1016/j.scriptamat.2015.04.003
Badr MH, Ng KW. A new heat treatment to prepare high-quality polycrystalline and single crystal MgB2 in a single process. Superconductor Science and Technology 2003; 16: 668. https://doi.org/10.1088/0953-2048/16/6/302
Giunchi G, Ripamonti G, Cavallin T, Bassani E. The reactive liquid Mg infiltration process to produce large superconducting bulk MgB2 manufacts. Cryogenics 2006; 46 (2-3): 237-242. https://doi.org/10.1016/j.cryogenics.2005.11.011
Bhagurkar A. Processing of MgB2 Bulk Superconductor by Infiltration and Growth. London: Brunel Univeristy London, 2017. http://bura.brunel.ac.uk/handle/2438/14777
Kitaguchi H, Matsumoto A, Kumakura H, Doi T, Yamamoto H, Saitoh K, Sosiati H, Hata S. MgB2 films with very high critical current densities due to strong grain boundary pinning. Applied Physics Letters 2004; 85: 2842-2844. https://doi.org/10.1063/1.1805195
Prikhna TA, Eisterer M, Weber HW, Gawalek W, Kovylaev VV, Karpets MV, Basyuk TV, Moshchil VE. Nanostructural inhomogeneities acting as pinning centers in bulk MgB2 with low and enhanced grain connectivity. Superconductor Science and Technology 2014; 27: 044013. https://doi.org/10.1088/0953-2048/27/4/044013
Durrell JH, Dancer CEJ, Dennis A, Shi Y, Xu Z, Campbell AM, Hari Babu N, Todd RI, Grovenor CRM, Cardwell DA. A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing. Superconductor Science and Technology 2012; 25: 112002. https://doi.org/10.1088/0953-2048/25/11/112002
Kodama M, Kotaki H, Suzuki T, Tanaka H. Relation between constituent material fraction in multifilamentary MgB2 wires and requirements for MRI magnets. Superconductor Science and Technology 2022; 35: 094007. https://doi.org/10.1088/1361-6668/ac8317
Patel D, Matsumoto A, Kumakura H, Maeda M, Kim SH, Hossain MSA, Choi S, Kim JH. MgB2 for MRI applications: dual sintering induced performance variations in in situ and IMD processed MgB2 conductors. Journal of Materials Chemistry C 2020; 8: 2507-2516. https://doi.org/10.1039/C9TC06114B
Kodama M, Kotaki H, Ohara S, Ichiki Y, Fujita S, Suzuki T, Tanaka H, Aoki M. Feasibility study of novel rapid ramp-down procedure in MgB2 MRI magnet using persistent current switch with high off-resistivity. Superconductor Science and Technology 2021; 34: 074003. https://doi.org/10.1088/1361-6668/ac034f
Zhang R. The Potential Superconducting Materials in MRI Scanner—Comparison between NbTi and MgB2. Highlights in Science, Engineering and Technology 2023; 29: 308-315. https://doi.org/10.54097/hset.v29i.4845
Zhang Z, MacManus-Driscoll J, Suo H, Wang Q. Review of synthesis of high volumetric density, low gravimetric density MgB2 bulk for potential magnetic field applications. Superconductivity 2022; 3: 100015. https://doi.org/10.1016/j.supcon.2022.100015
Knott J, Commins PA, Moscrop J, Dou SX. Design considerations in MgB2-based superconducting coils for use in saturated-core fault current limiters. IEEE Trans. Appl. Supercond. 2014; 24 (5): 1-4. https://doi.org/10.1109/TASC.2014.2340459
Ye L, Majoros M, Campbell AM, Coombs T, Astill D, Harrison S, Husband M, Rindfleisch M ve diğerleri. Experimental studies of the quench behaviour of MgB2 superconducting wires for fault current limiter applications. Superconductor Science and Technology 2007; 20 (7): 621. https://doi.org/10.1088/0953-2048/20/7/007
Smith AC, Oliver A, Pei X, Husband M, Rindfleisch M. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire. Superconductor Science and Technology 2012; 25 (12): 125018. https://doi.org/10.1088/0953-2048/25/12/125018
Lolli L, Li T, Portesi C, Taralli E, Acharya N, Chen K, Rajteri M, Cox D ve diğerleri. Micro-SQUIDs based on MgB2 nano-bridges for NEMS readout. Superconductor Science and Technology 2016; 29 (10): 104008. https://doi.org/10.1088/0953-2048/29/10/104008
Magnusson N, Hellesø SM, Mikkonen R, Abrahamsen AB, Runde M, Berg G, Nysveen A. Testing of an MgB2 coil for a wind turbine generator pole. Physica C: Superconductivity and its Applications 2021; 587: 1353901. https://doi.org/10.1016/j.physc.2021.1353901
Kalsi SS, Badcock RA, Storey JG, Hamilton KA, Jiang Z. Motors Employing REBCO CORC and MgB2 Superconductors for AC Stator Windings. IEEE Transactions on Applied Superconductivity 2021; 31 (9): 1-7. https://doi.org/10.1109/TASC.2021.3113574
Hossain MSA, Motaman A, Xun X, See KW, Çiçek Ö, Ağıl H, Ertekin E, Gencer A ve diğerleri. Structurally homogeneous MgB2 superconducting wires through economical wet mixing process. Materials Letters 2013; 91: 356-358. https://doi.org/10.1016/j.matlet.2012.09.105
Noudem JG, Xing Y, Bernstein P, Retoux R, Higuchi M, Arvapalli SS, Muralidhar M, Murakami M. Improvement of critical current density of MgB2 bulk superconductor processed by Spark Plasma Sintering. Journal of the American Ceramic Society 2020; 103 (11): 6169-6175. https://doi.org/10.1111/jace.17366
Kodama M, Suzuki T, Tanaka H, Okishiro K, Okamoto K, Nishijima G, Matsumoto A, Yamamoto A ve diğerleri. High-performance dense MgB2 superconducting wire fabricated from mechanically milled powder. Superconductor Science and Technology 2017; 30: 044006. https://doi.org/10.1088/1361-6668/aa5f36
Kobayashi H, Muralidhar M, Koblischka MR, Inoue K, Murakami M. Improvement in the Performance of Bulk MgB2 Material through Optimization of Sintering Process. Physics Procedia 2015; 65: 73-76. https://doi.org/10.1016/j.phpro.2015.05.127
Dadiel JL, Naik SPK, Peczkowski P, Sugiyama J, Ogino H, Sakai N, Kazuya Y, Warski T ve diğerleri. Synthesis of Dense MgB2 Superconductor via In Situ and Ex Situ Spark Plasma Sintering Method. Materials 2021; 14 (23): 7395. https://doi.org/10.3390/ma14237395
Muralidhar M, Shadab M, Srikanth AS, Jirsa M, Noudem J. Review on high-performance bulk MgB2 superconductors. Journal of Physics D: Applied Physics 2024; 57: 053001. https://doi.org/10.1088/1361-6463/ad039a
Hossain MSA, Mustapic M, Gajda D, Senatore C, Patel D, Yamauchi Y, Shahbazi M, Flukiger, R. Significant reduction of critical current anisotropy in malic acid treated MgB2 tapes. Journal of Magnetism and Magnetic Materials 2020; 497: 166046. https://doi.org/10.1016/j.jmmm.2019.166046
Erdem O, Kirat G. Influence of coronene addition on some superconducting properties of bulk MgB2. Journal of Materials Science: Materials in Electronics 2018; 29: 17222-17233. https://doi.org/10.1007/s10854-018-9816-3
Duz I, Guner SB, Erdem O, Demir I, Kapucu V, Çelik Ş, Ozturk K, Hossain MSA, Gencer A, Yanmaz E. Comparison of Levitation Forces of Bulk MgB2 Superconductors Produced by Nano Boron and Carbon-Doped Nano Boron. Journal of Superconductivity and Novel Magnetism 2014; 27: 2241-2247. https://doi.org/10.1007/s10948-014-2602-4
Ma Z, Liu Y, Shi Q, Zhao Q, Gao Z. Effect of Cu addition in reduction of MgO content for the synthesis of MgB2 through sintering. Journal of Alloys and Compounds 2009; 471 (1-2): 105-108. https://doi.org/10.1016/j.jallcom.2008.03.098
Ghorbani SR, Farshidnia G, Wang XL, Dou SX. Flux pinning mechanism in SiC and nano-C doped MgB2: evidence for transformation from δTc to δℓ pinning. Superconductor Science and Technology 2014; 27 (12): 125003. https://doi.org/10.1088/0953-2048/27/12/125003
Kovac P, Husek I, Melisek T, Grivel JC, Pachla W, Strbik V, Diduszko R, Homeyer J, ve diğerleri. The role of MgO content in ex situ MgB2 wires. Superconductor Science and Technology 2004; 17 (10): L41. https://doi.org/10.1088/0953-2048/17/10/L03
Malagoli A, Braccini V, Bernini C, Romano G, Vignolo M, Putti M, Ferdeghini C. Study of the MgB2 grain size role in ex situ multifilamentary wires with thin filaments. Superconductor Science and Technology 2010; 23 (2): 025032. https://doi.org/10.1088/0953-2048/23/2/025032
Perini E, Giunchi G, Saglietti L, Albisetti AF, Matrone A, Cavaliere V. Magnetic Field Trapping in MgB2 Bulks and Inserts. IEEE Transactions on Applied Superconductivity 2011; 21 (3): 2690-2693. https://doi.org/10.1109/TASC.2010.2086043
Gajda D, Babij M, Zaleski A, Avcı D, Karaboğa F, Yetiş H, Belenli İ, Czujko T. Investigation of Layered Structure Formation in MgB2 Wires Produced by the Internal Mg Coating Process under Low and High Isostatic Pressures. Materials 2024; 17 (6): 1362. https://doi.org/10.3390/ma17061362
Yetiş H, Avcı D, Karaboğ, F, Aksoy C, Gajda D, Martinez E, Tanyıldızı FM, Zaleski A, Babij M, Tran ML, Angurel LA, de la Fuente GF, Belenli İ. Transport and structural properties of MgB2/Fe wires produced by redesigning internal Mg diffusion process. Superconductor Science and Technology 2022; 35: 045012. https://doi.org/10.1088/1361-6668/ac5339
Xiong X, Wang Q, Yang F, Feng J, Li C, Yn G, Zhang P. Improved superconducting properties of multifilament internal Mg diffusion processed MgB2 wires by rapid thermal processing. Physica C: Superconductivity and its Applications 2021; 580: 1353800. https://doi.org/10.1016/j.physc.2020.135380
Patel D, Matsumoto A, Kumakura H, Moronaga T, Hara Y, Hara, T, Maeda M, Hossain MSA, Yamauchi Y, Choi S, Kim JH. Superconducting Joining Concept for Internal Magnesium Diffusion-Processed Magnesium Diboride Wires. ACS Applied Materials and Interfaces 2021; 13 (2): 3349-3357. https://doi.org/10.1021/acsami.0c17385
Avcı D, Yetiş H, Gajda D, Babij M, Tran LM, Karaboğa F, Aksoy C, Zaleski A, Belenli I. Optimized superconducting MgB2 joint made by IMD technique. Superconductor Science and Technology 2023; 36: 075004. https://doi.org/10.1088/1361-6668/accf3f
Zhao W, Suo H, Wang S, Ma L, Wang L, Wang Q, Zhang Z. Mg gas infiltration for the fabrication of MgB2 pellets using nanosized and microsized B powders. Journal of the European Ceramic Society 2022; 15: 7036-7048. https://doi.org/10.1016/j.jeurceramsoc.2022.08.029
Wang C, Ma Y, Zhang X, Wang D, Gao Z, Yao C, Wang C, Oguro H ve diğerleri. Effect of high-energy ball milling time on superconducting properties of MgB2 with low purity boron powder. Superconductor Science and Technology 2021; 25 (3): 035018. https://doi.org/10.1088/0953-2048/25/3/035018
Wu YF, Lu YF, Li JS, Chen SK, Yan G, Pu MH, Li CS, Zhang PX. The microstructures and superconducting properties of MgB2 bulks prepared by a high-energy milling method. Physica C: Superconductivity and its Applications 2007; 467 (1-2): 38-42. https://doi.org/10.1016/j.physc.2007.08.010
Arvapalli SS, Muralidhar M, Murakami M. High-Performance Bulk MgB2 Superconductor Using Amorphous Nano-boron. Journal of Superconductivity and Novel Magnetism 2019; 32: 1891-1895. https://doi.org/10.1007/s10948-018-4919-x
Zhou S, Pan AV, Horvat J, Qin MJ, Liu HK. Effects of precursor powders and sintering processes on the superconducting properties of MgB2. Superconductor Science and Technology 2004; 17 (9): S528. https://doi.org/10.1088/0953-2048/17/9/014
Xu X, Santos DID, Kim JH, Yeoh WK, Qin MJ, Konstantinov K, Dou SX. Effect of Boron powder purity on superconducting properties of bulk MgB2. Physica C: Superconductivity and its Applications 2007; 460-462 (1): 602-603. https://doi.org/10.1016/j.physc.2007.04.112
Gajda, D. Analysis Method of High-Field Pinning Centers in NbTi Wires and MgB2 Wires. Journal of Low Temperature Physics 2019; 194: 166-182. https://doi.org/10.1007/s10909-018-2076-z
Alecu G, Cosac A, Zamfir S. Superconductivity in MgB2. Annals of the University of Craiova. Electrical Engineering Series 2006; 30: 382-385.
Varghese N, Vinod K, Rao A, Kuo YK, Syamaprasad U. Enhanced superconducting properties of bulk MgB2 prepared by in situ Powder-In-Sealed-Tube method. Journal of Alloys and Compounds 2009; 470, (1-2): 63-66. https://doi.org/10.1016/j.jallcom.2008.03.056
Safran S, Kılıç A, Asikuzun E, Kılıçarslan E, Ozturk O, Gencer A. Influence of different boron precursors on superconducting and mechanical properties of MgB2. Journal of Materials Science: Materials in Electronics 2014; 25: 2737-2747. https://doi.org/10.1007/s10854-014-1937-8
Savaskan B, Ozturk UK, Güner SB, Abdioglu M, Bahadır MV, Acar S, Somer M, Ionescu AM, Locovei C, Enculescu M, Badica P. Bulk MgB2 superconductor for levitation applications fabricated with boron processed by different routes. Journal of Alloys and Compounds 2023; 961: 170893. https://doi.org/10.1016/j.jallcom.2023.170893
Durmuş H, Kocabaş K. The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. Journal of Materials Science: Materials in Electronics 2022; 33: 17079-17089. https://doi.org/10.1007/s10854-022-08584-0
Lim JH, Jang SH, Hwang SM, Choi JH, Joo J, Kang WN, Kim C. Effects of the sintering temperature and doping of C60 and SiC on the critical properties of MgB2. Physica C: Superconductivity 2008; 468 (15-20): 1829-1832. https://doi.org/10.1016/j.physc.2008.05.233
Zhou S, Pan AV, Dou SX. An attempt to improve the superconducting properties of MgB2 by doping with Zn-containing organic compound. Journal of Alloys and Compounds 2009; 487 (1-2): 42-46. https://doi.org/10.1016/j.jallcom.2009.08.046
Sinha BB, Kadam MB, Mudgel M, Awana VPS, Kishan H, Pawar SH. Synthesis and characterization of excess magnesium MgB2 superconductor under inert carbon environment. Physica C: Superconductivity 2010; 470 (1: 25-30. https://doi.org/10.1016/j.physc.2009.09.010
Husekova K, Husek I, Kovac P, Kulich M, Dobrocka E, Strbik V. Properties of MgB2 superconductor chemically treated by acetic acid. Physica C: Superconductivity 2010; 470 (5-6): 331-335. https://doi.org/10.1016/j.physc.2010.02.001
Zhang Z, Suo H, Ma L, Zhang T, Liu M, Zhou M. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes. Physica C: Superconductivity and its Applications 2011; 471 (21-22): 908-911. https://doi.org/10.1016/j.physc.2011.05.086
Kim JH, Dou SX, Rindfleisch M, Tomsic M. Study of MgO formation and structural defects in in situ processed MgB2. Superconductor Science and Technology 2007; 20 (10): 1026-1031. https://doi.org/10.1088/0953-2048/20/10/023
Qin F, Cai Q, Chen H. Partial dissolution of MgO and the effect on critical current density in urea-doped MgB2 bulks. Journal of Alloys and Compounds 2015; 633: 201-206. https://doi.org/10.1016/j.jallcom.2015.02.018
Singh DK, Tiwari B, Jha R, Kishan H, Awana VSP. Role of MgO impurity on the superconducting properties of MgB2. Physica C: Superconductivity and its Applications 2014; 505: 104-108. https://doi.org/10.1016/j.physc.2014.06.004
Jiang CH, Hatakeyama H, Kumakura H. Effect of nanometer MgO addition on the in situ PIT processed MgB2/Fe tapes. Physica C: Superconductivity 2005; 423, (1-2): 45-50. https://doi.org/10.1016/j.physc.2005.03.022
Mostafa MYA, Mostafa A, Abdel-Rahman M, Assem EE, Ashour A, Badawi EA. XRD peak broadening modelling for Al-alloys characterization compared with Rietveld profile analysis. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.04.252
Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 1918; 26: 98-100.
Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1953; 1 (1): 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
Lee JH, Shin SY, Kim CJ, Park HW. Superconducting properties of MgB2 prepared from attrition ball-milled boron powder. Journal of Alloys and Compounds 2009; 476 (1-2): 919-924. https://doi.org/10.1016/j.jallcom.2008.09.197
Kim JH, Dou SX, Shi DQ, Rindfleisch M, Tomsic M. Study of MgO formation and structural defects inin situprocessed MgB2/Fe wires. Superconductor Science and Technology 2007; 20 (10): 1026-1031. https://doi.org/10.1088/0953-2048/20/10/023
Maeda M, Choi JH, Knott JC, Kim JH, Hahn G, Kang H, Hahn S, Choi S. Disorder anisotropy of layered structure in multi-band MgB2 superconducting materials with high critical current performance. Journal of Alloys and Compounds 2023; 934: 167873. https://doi.org/10.1016/j.jallcom.2022.167873
Eisterer M. Magnetic properties and critical currents of MgB2. Superconductor Science and Technology 2007; 20, (12): R47-R73. https://doi.org/10.1088/0953-2048/20/12/R01
Kim JH, Dou SX, Wang JL, Shi DQ, Xu X, Hossain MSA, Yeoh WK, Choi S, Kiyoshi T. The effects of sintering temperature on superconductivity in MgB2/Fe wires. Superconductor Science and Technology 2007; 20: 448-451. https://doi.org/10.1088/0953-2048/20/5/007
Bean CP. Magnetization of hard superconductors. Physical Review Letters 1962; 8 (6): 250-252. https://doi.org/10.1103/PhysRevLett.8.250
Felner I, Awana VPS, Mundgel M, Kishan H. Avalanche of flux jumps in polycrystalline MgB2 superconductor. Journal of Applied Physics 2007; 101: 09G101. https://doi.org/10.1063/1.2669959
Dadiel JL, Sugiyama J, Sakai N, Takemura K, Oka T, Ogino H, Muralidhar M, Murakami M. Improved Connectivity of MgB2 Bulk Superconductor via In Situ-Ex Situ Co-synthesis. Journal of Superconductivity and Novel Magnetism 2023; 36: 1097–1102. https://doi.org/10.1007/s10948-023-06549-w
Koblischka MR, Murakami M. Pinning mechanisms in bulk high-TC superconductors. Superconductor Science and Technology 2000; 13 (6): 738. https://doi.org/10.1088/0953-2048/13/6/321
Dew-Hughes D. Flux pinning mechanisms in type II superconductors. Philosophical Magazine 1974; 30: 293-305. https://doi.org/10.1080/14786439808206556
Koblischka MR, Wiederhold A, Koblischka-Veneva A, Chang C, Berger K, Nouailhetas Q, Douine B, Murakami M. On the origin of the sharp, low-field pinning force peaks in MgB2 superconductors. AIP Advances 2020; 10: 015035. https://doi.org/10.1063/1.5133765
Matsumoto Y, Shigeta I, Abiru T, Terasaki Y, Akune T, Sakamoto N. Critical current density and flux pinning characteristics of powdered MgB2 specimens. Physica C: Superconductivity 2003; 2388-389: 163-164. https://doi.org/10.1016/S0921-4534(02)02707-7
Kalsi SS, Hamilton KA, Badcock RA. Superconducting rotating machines for aerospace applications. 2018 Joint Propulsion Conference, Cincinnati, OH, USA. https://doi.org/10.2514/6.2018-4796
Gao Z, Ma Y, Zhang X, Wang D, Yu Z, Yang H, Wen H, Mossang E. Enhancement of the critical current density and the irreversibility field in maleic anhydride doped MgB2 based tapes. Journal of Applied Physics 2007; 102: 013914. https://doi.org/10.1063/1.2748711
Fujii H, Kitaguchi H. Superconducting properties of sintered ex situ MgB2 tapes through ball milling process as a function of crystallite size in the as-milled and sintered states. Physica C: Superconductivity and its Applications 2021; 583: 1353838. https://doi.org/10.1016/j.physc.2021.1353838
Tripathi D, Dey TK. Effect of (Bi, Pb)-2223 addition on thermal transport of superconducting MgB2 pellets. Journal of Alloys and Compounds 2015; 618: 56-63. https://doi.org/10.1016/j.jallcom.2014.08.065
Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi
MgB2 süperiletken külçeleri, Türkiye’de saflaştırılmış olan üç farklı saflıkta B tozu kullanarak tümüyle aynı koşullarda Mg difüzyon yöntemiyle sentezlendi. Laboratuvar ölçekli çalışmalarda çoğunlukla yüksek saflıkta başlangıç tozları kullanılmaktadır. Büyük ölçekli üretim için yüksek saflıktaki başlangıç tozları üretim maliyeti açısından büyük bir yük getirmektedir. Bu çalışmamızda Mg difüzyon yöntemi için B düşük saflık derecesinin etkisi incelenmiştir. 850 °C’de 10 saatlik ısıl işlem sonucu üretilen MgB2 külçe numunelerinin, mikro yapısal özellikleri XRD analizleri ile incelenmiştir. XRD sonuçları Rietveld yöntemiyle arıtılarak örgü parametreleri a=b=3,08 Å, c=3,52 Å civarında elde edilmiştir. Kristal boyutları ve mikro gerinimleri Scherrer ve Williamson-Hall formülleri kullanılarak hesaplanmıştır. Ayrıca manyetik özellikleri incelendiğinde, %86,70 saflıkta B kaynağı kullanılan numune de Tc değeri 38,74 K ve 20 K’de Jc(B=0) değeri ise 3,14x105 A/cm2 olarak tespit edilmiştir. Manyetik ölçümlerden Fp hesaplanmış ve çivilenme mekanizmaları Dew-Hughes'un ölçeklendirme yaklaşımı ile irdelenmiştir. Numunelerimizin tümünde baskın çivilenme mekanizması tane sınırları ve süperiletken olmayan nokta çivilenme mekanizmaları olduğu tespit edilmiştir. İlgili teknolojiler için önemli olan yüksek Jc ve Tc değerlerine %86,70 saflıkta Türkiye’de saflaştırılmış olan B kaynağı ile ulaşılabileceği gösterilmiştir.
Bu çalışmanın, özgün bir çalışma olduğunu; çalışma fikrinin tarafıma ait olduğunu, tüm deneysel çalışmaların TÜBİTAK 2219 desteği ile tarafımca yapıldığını, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davranarak tarafımca yapıldığını, bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi beyan ederim.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
TÜBİTAK’ın 2219-Yurt Dışı Doktora Sonrası Araştırma Burs Programı
Teşekkür
TÜBİTAK’ın 2219-Yurt Dışı Doktora Sonrası Araştırma Burs Programı desteği ile yapılan çalışma sonuçlarından hazırlanmıştır. Bu desteği için TÜBİTAK'a teşekkür ederim.
Kaynakça
Nagamatsu, J, Nakagawa, N, Muranaka, T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature 2001; 410: 63-64. https://doi.org/10.1038/35065039
Barua S, Hossain MSA, Ma Z, Patel D, Mustapic M, Somer M, Acar S, Kokal I ve diğerleri. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scripta Materialia 2015; 104: 37-40. https://doi.org/10.1016/j.scriptamat.2015.04.003
Badr MH, Ng KW. A new heat treatment to prepare high-quality polycrystalline and single crystal MgB2 in a single process. Superconductor Science and Technology 2003; 16: 668. https://doi.org/10.1088/0953-2048/16/6/302
Giunchi G, Ripamonti G, Cavallin T, Bassani E. The reactive liquid Mg infiltration process to produce large superconducting bulk MgB2 manufacts. Cryogenics 2006; 46 (2-3): 237-242. https://doi.org/10.1016/j.cryogenics.2005.11.011
Bhagurkar A. Processing of MgB2 Bulk Superconductor by Infiltration and Growth. London: Brunel Univeristy London, 2017. http://bura.brunel.ac.uk/handle/2438/14777
Kitaguchi H, Matsumoto A, Kumakura H, Doi T, Yamamoto H, Saitoh K, Sosiati H, Hata S. MgB2 films with very high critical current densities due to strong grain boundary pinning. Applied Physics Letters 2004; 85: 2842-2844. https://doi.org/10.1063/1.1805195
Prikhna TA, Eisterer M, Weber HW, Gawalek W, Kovylaev VV, Karpets MV, Basyuk TV, Moshchil VE. Nanostructural inhomogeneities acting as pinning centers in bulk MgB2 with low and enhanced grain connectivity. Superconductor Science and Technology 2014; 27: 044013. https://doi.org/10.1088/0953-2048/27/4/044013
Durrell JH, Dancer CEJ, Dennis A, Shi Y, Xu Z, Campbell AM, Hari Babu N, Todd RI, Grovenor CRM, Cardwell DA. A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing. Superconductor Science and Technology 2012; 25: 112002. https://doi.org/10.1088/0953-2048/25/11/112002
Kodama M, Kotaki H, Suzuki T, Tanaka H. Relation between constituent material fraction in multifilamentary MgB2 wires and requirements for MRI magnets. Superconductor Science and Technology 2022; 35: 094007. https://doi.org/10.1088/1361-6668/ac8317
Patel D, Matsumoto A, Kumakura H, Maeda M, Kim SH, Hossain MSA, Choi S, Kim JH. MgB2 for MRI applications: dual sintering induced performance variations in in situ and IMD processed MgB2 conductors. Journal of Materials Chemistry C 2020; 8: 2507-2516. https://doi.org/10.1039/C9TC06114B
Kodama M, Kotaki H, Ohara S, Ichiki Y, Fujita S, Suzuki T, Tanaka H, Aoki M. Feasibility study of novel rapid ramp-down procedure in MgB2 MRI magnet using persistent current switch with high off-resistivity. Superconductor Science and Technology 2021; 34: 074003. https://doi.org/10.1088/1361-6668/ac034f
Zhang R. The Potential Superconducting Materials in MRI Scanner—Comparison between NbTi and MgB2. Highlights in Science, Engineering and Technology 2023; 29: 308-315. https://doi.org/10.54097/hset.v29i.4845
Zhang Z, MacManus-Driscoll J, Suo H, Wang Q. Review of synthesis of high volumetric density, low gravimetric density MgB2 bulk for potential magnetic field applications. Superconductivity 2022; 3: 100015. https://doi.org/10.1016/j.supcon.2022.100015
Knott J, Commins PA, Moscrop J, Dou SX. Design considerations in MgB2-based superconducting coils for use in saturated-core fault current limiters. IEEE Trans. Appl. Supercond. 2014; 24 (5): 1-4. https://doi.org/10.1109/TASC.2014.2340459
Ye L, Majoros M, Campbell AM, Coombs T, Astill D, Harrison S, Husband M, Rindfleisch M ve diğerleri. Experimental studies of the quench behaviour of MgB2 superconducting wires for fault current limiter applications. Superconductor Science and Technology 2007; 20 (7): 621. https://doi.org/10.1088/0953-2048/20/7/007
Smith AC, Oliver A, Pei X, Husband M, Rindfleisch M. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire. Superconductor Science and Technology 2012; 25 (12): 125018. https://doi.org/10.1088/0953-2048/25/12/125018
Lolli L, Li T, Portesi C, Taralli E, Acharya N, Chen K, Rajteri M, Cox D ve diğerleri. Micro-SQUIDs based on MgB2 nano-bridges for NEMS readout. Superconductor Science and Technology 2016; 29 (10): 104008. https://doi.org/10.1088/0953-2048/29/10/104008
Magnusson N, Hellesø SM, Mikkonen R, Abrahamsen AB, Runde M, Berg G, Nysveen A. Testing of an MgB2 coil for a wind turbine generator pole. Physica C: Superconductivity and its Applications 2021; 587: 1353901. https://doi.org/10.1016/j.physc.2021.1353901
Kalsi SS, Badcock RA, Storey JG, Hamilton KA, Jiang Z. Motors Employing REBCO CORC and MgB2 Superconductors for AC Stator Windings. IEEE Transactions on Applied Superconductivity 2021; 31 (9): 1-7. https://doi.org/10.1109/TASC.2021.3113574
Hossain MSA, Motaman A, Xun X, See KW, Çiçek Ö, Ağıl H, Ertekin E, Gencer A ve diğerleri. Structurally homogeneous MgB2 superconducting wires through economical wet mixing process. Materials Letters 2013; 91: 356-358. https://doi.org/10.1016/j.matlet.2012.09.105
Noudem JG, Xing Y, Bernstein P, Retoux R, Higuchi M, Arvapalli SS, Muralidhar M, Murakami M. Improvement of critical current density of MgB2 bulk superconductor processed by Spark Plasma Sintering. Journal of the American Ceramic Society 2020; 103 (11): 6169-6175. https://doi.org/10.1111/jace.17366
Kodama M, Suzuki T, Tanaka H, Okishiro K, Okamoto K, Nishijima G, Matsumoto A, Yamamoto A ve diğerleri. High-performance dense MgB2 superconducting wire fabricated from mechanically milled powder. Superconductor Science and Technology 2017; 30: 044006. https://doi.org/10.1088/1361-6668/aa5f36
Kobayashi H, Muralidhar M, Koblischka MR, Inoue K, Murakami M. Improvement in the Performance of Bulk MgB2 Material through Optimization of Sintering Process. Physics Procedia 2015; 65: 73-76. https://doi.org/10.1016/j.phpro.2015.05.127
Dadiel JL, Naik SPK, Peczkowski P, Sugiyama J, Ogino H, Sakai N, Kazuya Y, Warski T ve diğerleri. Synthesis of Dense MgB2 Superconductor via In Situ and Ex Situ Spark Plasma Sintering Method. Materials 2021; 14 (23): 7395. https://doi.org/10.3390/ma14237395
Muralidhar M, Shadab M, Srikanth AS, Jirsa M, Noudem J. Review on high-performance bulk MgB2 superconductors. Journal of Physics D: Applied Physics 2024; 57: 053001. https://doi.org/10.1088/1361-6463/ad039a
Hossain MSA, Mustapic M, Gajda D, Senatore C, Patel D, Yamauchi Y, Shahbazi M, Flukiger, R. Significant reduction of critical current anisotropy in malic acid treated MgB2 tapes. Journal of Magnetism and Magnetic Materials 2020; 497: 166046. https://doi.org/10.1016/j.jmmm.2019.166046
Erdem O, Kirat G. Influence of coronene addition on some superconducting properties of bulk MgB2. Journal of Materials Science: Materials in Electronics 2018; 29: 17222-17233. https://doi.org/10.1007/s10854-018-9816-3
Duz I, Guner SB, Erdem O, Demir I, Kapucu V, Çelik Ş, Ozturk K, Hossain MSA, Gencer A, Yanmaz E. Comparison of Levitation Forces of Bulk MgB2 Superconductors Produced by Nano Boron and Carbon-Doped Nano Boron. Journal of Superconductivity and Novel Magnetism 2014; 27: 2241-2247. https://doi.org/10.1007/s10948-014-2602-4
Ma Z, Liu Y, Shi Q, Zhao Q, Gao Z. Effect of Cu addition in reduction of MgO content for the synthesis of MgB2 through sintering. Journal of Alloys and Compounds 2009; 471 (1-2): 105-108. https://doi.org/10.1016/j.jallcom.2008.03.098
Ghorbani SR, Farshidnia G, Wang XL, Dou SX. Flux pinning mechanism in SiC and nano-C doped MgB2: evidence for transformation from δTc to δℓ pinning. Superconductor Science and Technology 2014; 27 (12): 125003. https://doi.org/10.1088/0953-2048/27/12/125003
Kovac P, Husek I, Melisek T, Grivel JC, Pachla W, Strbik V, Diduszko R, Homeyer J, ve diğerleri. The role of MgO content in ex situ MgB2 wires. Superconductor Science and Technology 2004; 17 (10): L41. https://doi.org/10.1088/0953-2048/17/10/L03
Malagoli A, Braccini V, Bernini C, Romano G, Vignolo M, Putti M, Ferdeghini C. Study of the MgB2 grain size role in ex situ multifilamentary wires with thin filaments. Superconductor Science and Technology 2010; 23 (2): 025032. https://doi.org/10.1088/0953-2048/23/2/025032
Perini E, Giunchi G, Saglietti L, Albisetti AF, Matrone A, Cavaliere V. Magnetic Field Trapping in MgB2 Bulks and Inserts. IEEE Transactions on Applied Superconductivity 2011; 21 (3): 2690-2693. https://doi.org/10.1109/TASC.2010.2086043
Gajda D, Babij M, Zaleski A, Avcı D, Karaboğa F, Yetiş H, Belenli İ, Czujko T. Investigation of Layered Structure Formation in MgB2 Wires Produced by the Internal Mg Coating Process under Low and High Isostatic Pressures. Materials 2024; 17 (6): 1362. https://doi.org/10.3390/ma17061362
Yetiş H, Avcı D, Karaboğ, F, Aksoy C, Gajda D, Martinez E, Tanyıldızı FM, Zaleski A, Babij M, Tran ML, Angurel LA, de la Fuente GF, Belenli İ. Transport and structural properties of MgB2/Fe wires produced by redesigning internal Mg diffusion process. Superconductor Science and Technology 2022; 35: 045012. https://doi.org/10.1088/1361-6668/ac5339
Xiong X, Wang Q, Yang F, Feng J, Li C, Yn G, Zhang P. Improved superconducting properties of multifilament internal Mg diffusion processed MgB2 wires by rapid thermal processing. Physica C: Superconductivity and its Applications 2021; 580: 1353800. https://doi.org/10.1016/j.physc.2020.135380
Patel D, Matsumoto A, Kumakura H, Moronaga T, Hara Y, Hara, T, Maeda M, Hossain MSA, Yamauchi Y, Choi S, Kim JH. Superconducting Joining Concept for Internal Magnesium Diffusion-Processed Magnesium Diboride Wires. ACS Applied Materials and Interfaces 2021; 13 (2): 3349-3357. https://doi.org/10.1021/acsami.0c17385
Avcı D, Yetiş H, Gajda D, Babij M, Tran LM, Karaboğa F, Aksoy C, Zaleski A, Belenli I. Optimized superconducting MgB2 joint made by IMD technique. Superconductor Science and Technology 2023; 36: 075004. https://doi.org/10.1088/1361-6668/accf3f
Zhao W, Suo H, Wang S, Ma L, Wang L, Wang Q, Zhang Z. Mg gas infiltration for the fabrication of MgB2 pellets using nanosized and microsized B powders. Journal of the European Ceramic Society 2022; 15: 7036-7048. https://doi.org/10.1016/j.jeurceramsoc.2022.08.029
Wang C, Ma Y, Zhang X, Wang D, Gao Z, Yao C, Wang C, Oguro H ve diğerleri. Effect of high-energy ball milling time on superconducting properties of MgB2 with low purity boron powder. Superconductor Science and Technology 2021; 25 (3): 035018. https://doi.org/10.1088/0953-2048/25/3/035018
Wu YF, Lu YF, Li JS, Chen SK, Yan G, Pu MH, Li CS, Zhang PX. The microstructures and superconducting properties of MgB2 bulks prepared by a high-energy milling method. Physica C: Superconductivity and its Applications 2007; 467 (1-2): 38-42. https://doi.org/10.1016/j.physc.2007.08.010
Arvapalli SS, Muralidhar M, Murakami M. High-Performance Bulk MgB2 Superconductor Using Amorphous Nano-boron. Journal of Superconductivity and Novel Magnetism 2019; 32: 1891-1895. https://doi.org/10.1007/s10948-018-4919-x
Zhou S, Pan AV, Horvat J, Qin MJ, Liu HK. Effects of precursor powders and sintering processes on the superconducting properties of MgB2. Superconductor Science and Technology 2004; 17 (9): S528. https://doi.org/10.1088/0953-2048/17/9/014
Xu X, Santos DID, Kim JH, Yeoh WK, Qin MJ, Konstantinov K, Dou SX. Effect of Boron powder purity on superconducting properties of bulk MgB2. Physica C: Superconductivity and its Applications 2007; 460-462 (1): 602-603. https://doi.org/10.1016/j.physc.2007.04.112
Gajda, D. Analysis Method of High-Field Pinning Centers in NbTi Wires and MgB2 Wires. Journal of Low Temperature Physics 2019; 194: 166-182. https://doi.org/10.1007/s10909-018-2076-z
Alecu G, Cosac A, Zamfir S. Superconductivity in MgB2. Annals of the University of Craiova. Electrical Engineering Series 2006; 30: 382-385.
Varghese N, Vinod K, Rao A, Kuo YK, Syamaprasad U. Enhanced superconducting properties of bulk MgB2 prepared by in situ Powder-In-Sealed-Tube method. Journal of Alloys and Compounds 2009; 470, (1-2): 63-66. https://doi.org/10.1016/j.jallcom.2008.03.056
Safran S, Kılıç A, Asikuzun E, Kılıçarslan E, Ozturk O, Gencer A. Influence of different boron precursors on superconducting and mechanical properties of MgB2. Journal of Materials Science: Materials in Electronics 2014; 25: 2737-2747. https://doi.org/10.1007/s10854-014-1937-8
Savaskan B, Ozturk UK, Güner SB, Abdioglu M, Bahadır MV, Acar S, Somer M, Ionescu AM, Locovei C, Enculescu M, Badica P. Bulk MgB2 superconductor for levitation applications fabricated with boron processed by different routes. Journal of Alloys and Compounds 2023; 961: 170893. https://doi.org/10.1016/j.jallcom.2023.170893
Durmuş H, Kocabaş K. The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. Journal of Materials Science: Materials in Electronics 2022; 33: 17079-17089. https://doi.org/10.1007/s10854-022-08584-0
Lim JH, Jang SH, Hwang SM, Choi JH, Joo J, Kang WN, Kim C. Effects of the sintering temperature and doping of C60 and SiC on the critical properties of MgB2. Physica C: Superconductivity 2008; 468 (15-20): 1829-1832. https://doi.org/10.1016/j.physc.2008.05.233
Zhou S, Pan AV, Dou SX. An attempt to improve the superconducting properties of MgB2 by doping with Zn-containing organic compound. Journal of Alloys and Compounds 2009; 487 (1-2): 42-46. https://doi.org/10.1016/j.jallcom.2009.08.046
Sinha BB, Kadam MB, Mudgel M, Awana VPS, Kishan H, Pawar SH. Synthesis and characterization of excess magnesium MgB2 superconductor under inert carbon environment. Physica C: Superconductivity 2010; 470 (1: 25-30. https://doi.org/10.1016/j.physc.2009.09.010
Husekova K, Husek I, Kovac P, Kulich M, Dobrocka E, Strbik V. Properties of MgB2 superconductor chemically treated by acetic acid. Physica C: Superconductivity 2010; 470 (5-6): 331-335. https://doi.org/10.1016/j.physc.2010.02.001
Zhang Z, Suo H, Ma L, Zhang T, Liu M, Zhou M. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes. Physica C: Superconductivity and its Applications 2011; 471 (21-22): 908-911. https://doi.org/10.1016/j.physc.2011.05.086
Kim JH, Dou SX, Rindfleisch M, Tomsic M. Study of MgO formation and structural defects in in situ processed MgB2. Superconductor Science and Technology 2007; 20 (10): 1026-1031. https://doi.org/10.1088/0953-2048/20/10/023
Qin F, Cai Q, Chen H. Partial dissolution of MgO and the effect on critical current density in urea-doped MgB2 bulks. Journal of Alloys and Compounds 2015; 633: 201-206. https://doi.org/10.1016/j.jallcom.2015.02.018
Singh DK, Tiwari B, Jha R, Kishan H, Awana VSP. Role of MgO impurity on the superconducting properties of MgB2. Physica C: Superconductivity and its Applications 2014; 505: 104-108. https://doi.org/10.1016/j.physc.2014.06.004
Jiang CH, Hatakeyama H, Kumakura H. Effect of nanometer MgO addition on the in situ PIT processed MgB2/Fe tapes. Physica C: Superconductivity 2005; 423, (1-2): 45-50. https://doi.org/10.1016/j.physc.2005.03.022
Mostafa MYA, Mostafa A, Abdel-Rahman M, Assem EE, Ashour A, Badawi EA. XRD peak broadening modelling for Al-alloys characterization compared with Rietveld profile analysis. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.04.252
Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 1918; 26: 98-100.
Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1953; 1 (1): 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
Lee JH, Shin SY, Kim CJ, Park HW. Superconducting properties of MgB2 prepared from attrition ball-milled boron powder. Journal of Alloys and Compounds 2009; 476 (1-2): 919-924. https://doi.org/10.1016/j.jallcom.2008.09.197
Kim JH, Dou SX, Shi DQ, Rindfleisch M, Tomsic M. Study of MgO formation and structural defects inin situprocessed MgB2/Fe wires. Superconductor Science and Technology 2007; 20 (10): 1026-1031. https://doi.org/10.1088/0953-2048/20/10/023
Maeda M, Choi JH, Knott JC, Kim JH, Hahn G, Kang H, Hahn S, Choi S. Disorder anisotropy of layered structure in multi-band MgB2 superconducting materials with high critical current performance. Journal of Alloys and Compounds 2023; 934: 167873. https://doi.org/10.1016/j.jallcom.2022.167873
Eisterer M. Magnetic properties and critical currents of MgB2. Superconductor Science and Technology 2007; 20, (12): R47-R73. https://doi.org/10.1088/0953-2048/20/12/R01
Kim JH, Dou SX, Wang JL, Shi DQ, Xu X, Hossain MSA, Yeoh WK, Choi S, Kiyoshi T. The effects of sintering temperature on superconductivity in MgB2/Fe wires. Superconductor Science and Technology 2007; 20: 448-451. https://doi.org/10.1088/0953-2048/20/5/007
Bean CP. Magnetization of hard superconductors. Physical Review Letters 1962; 8 (6): 250-252. https://doi.org/10.1103/PhysRevLett.8.250
Felner I, Awana VPS, Mundgel M, Kishan H. Avalanche of flux jumps in polycrystalline MgB2 superconductor. Journal of Applied Physics 2007; 101: 09G101. https://doi.org/10.1063/1.2669959
Dadiel JL, Sugiyama J, Sakai N, Takemura K, Oka T, Ogino H, Muralidhar M, Murakami M. Improved Connectivity of MgB2 Bulk Superconductor via In Situ-Ex Situ Co-synthesis. Journal of Superconductivity and Novel Magnetism 2023; 36: 1097–1102. https://doi.org/10.1007/s10948-023-06549-w
Koblischka MR, Murakami M. Pinning mechanisms in bulk high-TC superconductors. Superconductor Science and Technology 2000; 13 (6): 738. https://doi.org/10.1088/0953-2048/13/6/321
Dew-Hughes D. Flux pinning mechanisms in type II superconductors. Philosophical Magazine 1974; 30: 293-305. https://doi.org/10.1080/14786439808206556
Koblischka MR, Wiederhold A, Koblischka-Veneva A, Chang C, Berger K, Nouailhetas Q, Douine B, Murakami M. On the origin of the sharp, low-field pinning force peaks in MgB2 superconductors. AIP Advances 2020; 10: 015035. https://doi.org/10.1063/1.5133765
Matsumoto Y, Shigeta I, Abiru T, Terasaki Y, Akune T, Sakamoto N. Critical current density and flux pinning characteristics of powdered MgB2 specimens. Physica C: Superconductivity 2003; 2388-389: 163-164. https://doi.org/10.1016/S0921-4534(02)02707-7
Kalsi SS, Hamilton KA, Badcock RA. Superconducting rotating machines for aerospace applications. 2018 Joint Propulsion Conference, Cincinnati, OH, USA. https://doi.org/10.2514/6.2018-4796
Gao Z, Ma Y, Zhang X, Wang D, Yu Z, Yang H, Wen H, Mossang E. Enhancement of the critical current density and the irreversibility field in maleic anhydride doped MgB2 based tapes. Journal of Applied Physics 2007; 102: 013914. https://doi.org/10.1063/1.2748711
Fujii H, Kitaguchi H. Superconducting properties of sintered ex situ MgB2 tapes through ball milling process as a function of crystallite size in the as-milled and sintered states. Physica C: Superconductivity and its Applications 2021; 583: 1353838. https://doi.org/10.1016/j.physc.2021.1353838
Tripathi D, Dey TK. Effect of (Bi, Pb)-2223 addition on thermal transport of superconducting MgB2 pellets. Journal of Alloys and Compounds 2015; 618: 56-63. https://doi.org/10.1016/j.jallcom.2014.08.065
Çiçek, Ö. (2024). Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 521-534. https://doi.org/10.35234/fumbd.1429915
AMA
Çiçek Ö. Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2024;36(2):521-534. doi:10.35234/fumbd.1429915
Chicago
Çiçek, Özlem. “Mg Difüzyonu Tekniği Ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 2 (Eylül 2024): 521-34. https://doi.org/10.35234/fumbd.1429915.
EndNote
Çiçek Ö (01 Eylül 2024) Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 521–534.
IEEE
Ö. Çiçek, “Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, ss. 521–534, 2024, doi: 10.35234/fumbd.1429915.
ISNAD
Çiçek, Özlem. “Mg Difüzyonu Tekniği Ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (Eylül 2024), 521-534. https://doi.org/10.35234/fumbd.1429915.
JAMA
Çiçek Ö. Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:521–534.
MLA
Çiçek, Özlem. “Mg Difüzyonu Tekniği Ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, 2024, ss. 521-34, doi:10.35234/fumbd.1429915.
Vancouver
Çiçek Ö. Mg Difüzyonu Tekniği ile Türkiye’de Saflaştırılmış Bor Kullanılarak Üretilen MgB2 için B Saflığının Süperiletkenlik Özellikleri Üzerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):521-34.