İkili Sözel Gösterim Tabanlı Bilişsel Haritanın Tedarik Zinciri Konfigürasyonunda Kullanımı
Yıl 2021,
, 233 - 241, 15.02.2021
Nazlı Göker
Mehtap Dursun
Öz
Günümüz rekabetçi pazar koşulları ve gelişmiş organizasyonel yapı firmaları tedarik zincirlerini daha verimli bir şekilde tasarlamaya yönlendirmektedir. Tedarik zinciri, artan küresel yetkinlik ve etkinlik kavramları nedeniyle daha önemli hale gelmektedir. Bu nedenle, şirketler için en iyi tedarik zinciri konfigürasyonunu (TZK) bulmak kritik durumdadır. Bu çalışmada riske karşı verilebilecek en uygun reaksiyonu belirlemek için tedarik zinciri yönetimi faktörleri incelenmektedir. İkili sözel gösterim modeli ve sözel hiyerarşiler, karar vericilerden farklı ölçekler kullanılarak elde edilen bilgilerin değerlendirme sürecinde kullanılmıştır. TZK'deki en önemli faktörleri belirlemek için bulanık bilişsel harita (BBH) metodolojisi uygulanmıştır. BBH metodolojisi, faktörler arasındaki sebep-sonuç ilişkilerinden, pozitif ve negatif ilişkilerden ve kesin veri eksikliğinden dolayı uygundur. Uygulama, Türkiye'nin en büyük üreticileri arasında yer alan bir otomobil fabrikasında gerçekleştirilmiş ve sonuçlar analiz edilmiştir.
Destekleyen Kurum
Galatasaray Üniversitesi Bilimsel Araştırma Projeleri
Proje Numarası
FBA-2020-1024
Teşekkür
Bu çalışma Galatasaray Üniversitesi Bilimsel Araştırma Projesi (Proje No: FBA-2020-1024) tarafından desteklenmektedir.
Kaynakça
- [1] Iansiti M, Levien R. Strategy as ecology. Harvard Business Review 2004; 82(3), 68-81.
- [2] Park JH, Lee JK, Yoo JS. A framework for designing the balanced supply chain scorecard. European Journal of Information Systems 2005; 14, 335-346.
- [3] Beamon BM, Fernandes C. Supply-chain network configuration for product recovery. Production Planning & Control 2004; 15(3), 270-281.
- [4] Huang GQ, Zhang XY, Lo VHY. Integrated configuration of platform products and supply chains for mass customization: A game theoretic approach. IEEE Transactions on Engineering Management 2007; 54(1), 156-171.
- [5] Akanle OM, Zhang DZ. Agent-based model for optimising supply-chain configurations. International Journal of Production Economics 2008; 115(2), 444-460.
- [6] Zhang X, Huang GQ. Game-theoretic approach to simultaneous configuration of platform products and supply chains with one manufacturing firm and multiple cooperative suppliers. International Journal of Production Economics 2010; 124(1), 121-136.
- [7] Ashayeri J, Tuzkaya G, Tuzkaya UR. Supply chain partners and configuration selection: an intuitionistic fuzzy choquet integral operatör based approach. Expert Systems with Applications 2012; 39(3), 3642-3649.
- [8] Amin SH, Zhang G. An integrated model for closed-loop supply chain configuration and supplier selection: multi-objective approach. Expert Systems with Applications 2012; 39(8), 6782-6791.
- [9] Li H, Womer K. Optimizing the supply chain configuration for make-to-order manufacturing. European Journal of Operational Research 2012; 221(1), 118-128.
- [10] Amin SH, Zhang G. A three-stage model for closed-loop supply chain configuration under uncertainty. International Journal of Production Research 2013; 51(5), 1405-1425.
- [11] Kumar S, Chatterjee AK. A heuristic-based approach to integrate the product line selection decision to the supply chain configuration. International Journal of Production Research 2013; 51(8), 2399-2413.
- [12] Mourtzis D, Doukas M. On the configuration of supply chains for assemble-to-order products: case studies from the automotive and the CNC machine building sectors. Robotics and Computer-Integrated Manufacturing 2015; 36, 13-24.
- [13] Kuang H, Hu SJ, Ko J. Concurrent design of assembly plans and supply chain configurations using and/or graphs and dynamic programingJournal of Manufacturing Science & Engineering-ASME 2016; 138(5), 051011.
- [14] Kisomi MS, Solimanpur M, Doniavi A. An integrated supply chain configuration model and procurement management under uncertainty: A set-based robust optimization methodology. Applied Mathematical Modelling 2016; 40(17-18), 7928-7947.
- [15] Arashpour M, Bai Y, Aranda-mena G, et al. Optimizing decisions in advanced manufacturing of prefabricated products: theorizing supply chain configurations in off-site construction. Auto Construct 2017; 84, 146-153.
- [16] Song G, Sun L, Wang Y. A decision-making model to support the design of a strategic supply chain configuration. Journal of Manufacturing Technology Management 2018; 29(3), 515-532.
- [17] Srai JS, Tsolakis N, Kumar M, et al. Circular supply chains and renewable chemical feedstocks: A network configuration analysis framework. Production Planning & Control 2018; 29(6), 464-482.
- [18] Gaur J, Amini M, Rao AK. The impact of supply chain disruption on the closed-loop supply chain configuration profit: a study of sourcing policies. International Journal of Production Research 2020; 58(17), 5380-5400.
- [19] Herrera F, Martínez L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems 2000; 8(6), 746-752.
- [20] Cordon O, Herrera F, Zwir I. Linguistic modeling by hierarchical systems of linguistic rules. IEEE Transactions on Fuzzy Systems 2002; 10(1), 2-20.
- [21] Herrera F, Martínez L. An approach for combining linguistic and numerical information based on 2-tuple fuzzy representation model in decision-making. International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems 2000; 8(5), 539-562.
- [22] Herrera-Viedma E, Herrera F, Martínez L, Herrera JC, López AG. Incorporating filtering techniques in a fuzzy linguistic multi-agent model for information gathering on the web. Fuzzy Sets and Systems 2004; 148(1), 61-83.
- [23] Kosko B. Fuzzy cognitive maps. International Journal of Man-Machine Studies 1986; 24, 65-75.
- [24] Büyükavcu A, Albayrak YE, Göker N. A fuzzy information-based approach for breast cancer risk factors assessment. Applied Soft Computing 2016; 38, 437-452.
- [25] Huynh VN, Nakamori Y. A satisfactory-oriented approach to multiexpert decision-making with linguistic assessments. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 2005; 35(2), 184-196.