Araştırma Makalesi
BibTex RIS Kaynak Göster

IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması

Yıl 2017, Cilt: 29 Sayı: 2, 231 - 240, 01.10.2017

Öz

Bu çalışmada 17 Mart ve 22-23 Haziran 2015 tarihlerinde meydana gelen şiddetli jeomanyetik fırtınalar süresince IRI (International Reference Ionosphere) and IONOLAB (Ionosphere Research Laboratory)’dan elde edilen Toplam Elektron İçeriği (TEC) değerleri karşılaştırıldı. Bir jeomanyetik fırtına solar (Bz, Vp ve Np) ve jeomanyetik (Dst, Kp and Ap) indisler aracılığıla tanımlandı. TEC değerleri Türkiye’nin Ankara istasyonu için GPS-temelli IONOLAB tahmin yöntemi ve ampirik bir model olan IRI-2012 modeli aracılığıyla elde edildi. Araştırmanın sonucunda 17 Mart 2015 şiddetli jeomanyetik fırtınanın başlangıç ve ana fazı süresince IRI-2012 TEC değerleri (~ 38 TECU) değişmezken IONOLAB-TEC değerlerinin (~ 64 TECU) aynı süreçte önemli derecede artmıştır. 22-23 Haziran 2015 şiddetli jeomanyetik fırtınası süresince fırtınanın tüm fazlarında IONOLAB-TEC değerleri diğer fırtına ile karşılaştırıldığında daha az değişim gösterir. Her iki fırtına süresince IRI modelinin TEC değerlerini fırtınanın öncesinde genellikle daha düşük ve fırtınanın sonrasında daha yüksek tahmin ettiği görülmüştür. Sonuç olarak IONOLAB tahmin metodunun şiddetli jeomanyetik fırtına süresince orta enlemde bulunan Türkiye’nin Ankara istasyonu üzerinde meydana gelen tedirginliklere IRI modelinden daha duyarlı olduğu söylenebilir.

Kaynakça

  • 1. Atıcı, R. and Sağır, S. (2017). The effect of QBO on foE. Adv. Space Res.60(2): 357-362.
  • 2. Atıcı, R. and Sağır, S. (2016). The Effect on Sporadic-E of Quasi-Biennial Oscillation. J. Phys. Sci. App.6:10-7.
  • 3. Atıcı, R., Güzel, E., Canyılmaz, M. and Sağır, S. (2016). The effect of lightning-induced electromagnetic waves on the electron temperatures in the lower ionosphere. Kuwait J. Sci. 43:143-9.
  • 4. Canyilmaz, M. Atici R, and Guzel E. (2013). The Effect of Earth's Magnetic Field on the HF Radio Wave Modes at the Heated Subionosphere. Acta Phys.Pol. A 123:786-90.
  • 5. Adebiyi, S.J., Adimula, I.A., Oladipo, O.A., Joshua, B.W., Adebesin, B.O. and Ikubanni, S.O. (2014). Ionospheric response to magnetic activity at low and mid-latitude stations. Acta Geophys. 62:973-89.
  • 6. Lastovicka, J. (2002). Monitoring and forecasting of ionospheric space weather - effects of geomagnetic storms. J Atmos Sol-Terr Phy 64:697-705.
  • 7. Liu, L.B., Wan, W.X., Ning, B.Q., Yuan, H. and Liu, J.Y. (2002). Low latitude ionospheric effects near longitude 120 degrees E during the great geomagnetic storm of July 2000. Sci China Ser A 45:148-55.
  • 8. Liu, L.B., Wan, W.X., Zhang, M.L. and Zhao, B.Q. (2008). Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms. Ann Geophys-Germany, 26:893-903.
  • 9. Lopez-Montes, R., Pérez-Enríquez, R., Araujo-Pradere, E.A. and Cruz-Abeyro, J.A.L. (2015). Fractal and wavelet analysis evaluation of the mid latitude ionospheric disturbances associated with major geomagnetic storms. Adv. Space Res. 55:586-96.
  • 10. Yue, X.N., Wang, W.B., Lei, J.H., Burns, A., Zhang, Y.L., et al. 2016. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J Geophys Res-Space, 121:9234-49.
  • 11. Purohit, P., Mansoori, A.A., Khan, P.A., Atulkar, R., Bhawre, P., et al. Evaluation of geomagnetic storm effects on the GPS derived Total Electron Content (TEC). Proc. Journal of Physics: Conference Series, 2015, 640:012072: IOP Publishing.
  • 12. Rastogi, R.G. (1977). Geomagnetic storms and electric fields in the equatorial ionosphere. Nature, 268(5619): 422-424.
  • 13. Kikuchi, T., Hashimoto, K., Kitamura, T.I., Tachihara, H. and Fejer, B. (2003). Equatorial counterelectrojets during substorms. J. Geophys. Res.: Space Phys.108 (A11).
  • 14. Fejer, B.G., Jensen, J.W., Kikuchi, T., Abdu, M.A., and Chau, J.L. (2007). Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res-Space 112 (A10).
  • 15. Joshua, B., Adeniyi, J., Adimula, I., Abbas, M. and Adebiyi, S. (2011). The effect of magnetic storm of May 2010 on the F2 layer over the Ilorin ionosphere. World J. Young Res 1:71.
  • 16. Adeniyi, J.O. (1986). Magnetic Storm Effects on the Morphology of the Equatorial F2-Layer. J Atmos Terr Phys 48:695-702.
  • 17. D’ujanga, F., Baki, P., Olwendo, J. and Twinamasiko, B. (2013). Total electron content of the ionosphere at two stations in East Africa during the 24–25 October 2011 geomagnetic storm. Adv. Space Res. 51:712-21.
  • 18. Alçay, S. and Öztan, G. (2016). Manyetik Fırtınalı ve Fırtınasız Günlerde IRI-PLAS ve IRI-2012 Modellerinin TEC Kestirim Performanslarının İncelenmesi. Electronic J. Map Technologies, 8(2): 131-140.
  • 19. Rao, P.V.S.R., Krishna, S.G., Niranjan, K and Prasad, D.S.V.V.D. (2006). Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004-2005. Ann Geophys-Germany 24:3279-92.
  • 20. Yizengaw, E., Moldwin, M., Galvan, D., Iijima, B., Komjathy, A. and Mannucci, A. (2008). Global plasmaspheric TEC and its relative contribution to GPS TEC. J. Atmos. Sol.-Terr. Phy. 70:1541-8.
  • 21. De Jesus, R., Sahai, Y., Guarnieri, F., Fagundes, P., De Abreu, A., et al. (2012). Ionospheric response of equatorial and low latitude F-region during the intense geomagnetic storm on 24–25 August 2005. Adv. Space Res. 49:518-29.
  • 22. de Jesus, R., Fagundes, P.R., Coster, A., Bolaji, O.S., Sobral, J.H.A., et al. (2016). Effects of the intense geomagnetic storm of September-October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle. J. Atmos. Sol.-Terr. Phy. 138:93-105.
  • 23. de Abreu, A., Martin, I., Fagundes, P., Venkatesh, K., Batista, I., et al. (2017). Ionospheric F-region observations over American sector during an intense space weather event using multi-instruments. J. Atmos. Sol.-Terr. Phy. 156:1-14.
  • 24. de Abreu, A.J., Fagundes, P.R., Gende, M., Bolaji, O.S., de Jesus, R. and Brunini, C. (2014). Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24. Adv. Space Res. 53:1313-28.
  • 25. Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., et al. 2015. Influence of geomagnetic storms of September 26-30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects. Geomagn Aeronomy+ 55:744-62.
  • 26. Mukherjee, S., Sarkar, S., Purohit, P., Gwal, A. 2010. Effect of geomagnetic storms in the Equatorial Anomaly Region observed from ground based data. International J. Geomatics-Geosci. 1:477.
  • 27. Manju, G., Pant, T.K., Ravindran, S. and Sridharan, R. (2009). On the response of the equatorial and low latitude ionospheric regions in the Indian sector to the large magnetic disturbance of 29 October 2003. Proc. Ann. Geophys- Atmos. Hydr. 27:2539.
  • 28. Bilitza, D. (2001). International Reference Ionosphere 2000. Radio Sci., 36:261-75.
  • 29. Arikan, F., Nayir, H., Sezen, U. and Arikan, O. (2008). Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci., 43.
  • 30. Arikan, F., Erol, C.B. and Arikan, O. (2003). Regularized estimation of vertical total electron content from Global Positioning System data. J. Geophys. Res-Space, 108.
  • 31. Eftaxiadis, K., Cervera, M.A. and Thomas, R.M. (1999). A Global Positioning System Receiver for Monitoring Ionospheric Total Electron Content, DTIC Document.
  • 32. Bilitza, D. (2003). International reference ionosphere 2000: Examples of improvements and new features. Description of the Low Latitude and Equatorial Ionosphere in the International Reference Ionosphere 31:757-67.
  • 33. Nava, B., Coisson, P. and Radicella, S.M. (2008). A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phy. 70:1856-62.
  • 34. Coisson, P., Radicella, S.M., Nava, B. and Leitinger, R. (2008). Low and equatorial latitudes topside in NeQuick. J. Atmos. Sol.-Terr. Phy., 70:901-6.
  • 35. Tariku, Y.A. (2015). TEC prediction performance of the IRI-2012 model over Ethiopia during the rising phase of solar cycle 24 (2009-2011). Earth Planets Space 67.
  • 36. Kumar, S. (2016). Performance of IRI-2012 model during a deep solar minimum and a maximum year over global equatorial regions. J Geophys Res-Space 121:5664-74.
  • 37. Adebiyi, S.J., Adimula, I.A., Oladipo, O.A. and Joshua, B.W. (2016). Assessment of IRI and IRI-Plas models over the African equatorial and low-latitude region. J Geophys Res-Space 121:7287-300.
  • 38. Chakraborty, M., Kumar, S., De, B.K. and Guha, A. (2015). Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector. J Earth Syst Sci 124:1115-26.
  • 39. Themens, D.R. and Jayachandran, P.T. (2016). Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content. J Geophys Res-Space 121:3793-807.
  • 40. Li, S.H., Li, L.H. and Peng, J.H. (2016). Variability of Ionospheric TEC and the Performance of the IRI-2012 Model at the BJFS Station, China. Acta Geophys 64:1970-87.
  • 41. Akala, A.O., Somoye, E.O., Adewale, A.O., Ojutalayo, E.W., Karia, S.P., et al. (2015). Comparison of GPS-TEC observations over Addis Ababa with IRI-2012 model predictions during 2010-2013. Adv. Space Res. 56:1686-98.
  • 42. Kurt, K., Yeşil, A., Sağir, S. and Atici, R. (2016). The Relationship of Stratospheric QBO with the Difference of Measured and Calculated NmF2. Acta Geophys. 64:2781-93
  • 43. Sezen, U., Arikan, F., Arikan, O., Ugurlu, O. and Sadeghimorad, A. (2013). Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11:297-305.
  • 44. Knyazeva, I.S., Makarenko, N.G., Kuperin, Y.A. and Dmitrieva, L.A. (2016). The new approach for dynamical regimes detection in geomagnetic time series. J Phys Conf Ser., 675.
  • 45. Basu, S., Basu, S., Rich, F., Groves, K., MacKenzie, E., et al. (2007). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. J. Geophys. Res.: Space Phys. 112.
  • 46. Basu, S., Basu, S., Groves, K., Yeh, H.C., Su, S.Y., et al. (2001). Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophys. Res. Lett. 28:3577-80.
  • 47. Buonsanto, M.J. (1999). Ionospheric storms—A review. Space Sci.Rev., 88:563-601.
  • 48. Adebiyi, S., Adimula, I., Oladipo, O., Joshua, B., Adebesin, B. and Ikubanni, S. (2014). Ionospheric response to magnetic activity at low and mid-latitude stations. Acta Geophys. 62:973-89.
  • 49. Adewale, A. 2013. Ionospheric effects of geomagnetic storms at Hobart and comparisons with IRI model predictions. J. Sci. Res. Dev. 14.
  • 50. Knyazeva, I., Makarenko, N., Kuperin, Y., Dmitrieva, L. (2016). The new approach for dynamical regimes detection in geomagnetic time series. Proc. J.Phys.: Conference Series, 675:032028: IOP Publishing.
Yıl 2017, Cilt: 29 Sayı: 2, 231 - 240, 01.10.2017

Öz

Kaynakça

  • 1. Atıcı, R. and Sağır, S. (2017). The effect of QBO on foE. Adv. Space Res.60(2): 357-362.
  • 2. Atıcı, R. and Sağır, S. (2016). The Effect on Sporadic-E of Quasi-Biennial Oscillation. J. Phys. Sci. App.6:10-7.
  • 3. Atıcı, R., Güzel, E., Canyılmaz, M. and Sağır, S. (2016). The effect of lightning-induced electromagnetic waves on the electron temperatures in the lower ionosphere. Kuwait J. Sci. 43:143-9.
  • 4. Canyilmaz, M. Atici R, and Guzel E. (2013). The Effect of Earth's Magnetic Field on the HF Radio Wave Modes at the Heated Subionosphere. Acta Phys.Pol. A 123:786-90.
  • 5. Adebiyi, S.J., Adimula, I.A., Oladipo, O.A., Joshua, B.W., Adebesin, B.O. and Ikubanni, S.O. (2014). Ionospheric response to magnetic activity at low and mid-latitude stations. Acta Geophys. 62:973-89.
  • 6. Lastovicka, J. (2002). Monitoring and forecasting of ionospheric space weather - effects of geomagnetic storms. J Atmos Sol-Terr Phy 64:697-705.
  • 7. Liu, L.B., Wan, W.X., Ning, B.Q., Yuan, H. and Liu, J.Y. (2002). Low latitude ionospheric effects near longitude 120 degrees E during the great geomagnetic storm of July 2000. Sci China Ser A 45:148-55.
  • 8. Liu, L.B., Wan, W.X., Zhang, M.L. and Zhao, B.Q. (2008). Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms. Ann Geophys-Germany, 26:893-903.
  • 9. Lopez-Montes, R., Pérez-Enríquez, R., Araujo-Pradere, E.A. and Cruz-Abeyro, J.A.L. (2015). Fractal and wavelet analysis evaluation of the mid latitude ionospheric disturbances associated with major geomagnetic storms. Adv. Space Res. 55:586-96.
  • 10. Yue, X.N., Wang, W.B., Lei, J.H., Burns, A., Zhang, Y.L., et al. 2016. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J Geophys Res-Space, 121:9234-49.
  • 11. Purohit, P., Mansoori, A.A., Khan, P.A., Atulkar, R., Bhawre, P., et al. Evaluation of geomagnetic storm effects on the GPS derived Total Electron Content (TEC). Proc. Journal of Physics: Conference Series, 2015, 640:012072: IOP Publishing.
  • 12. Rastogi, R.G. (1977). Geomagnetic storms and electric fields in the equatorial ionosphere. Nature, 268(5619): 422-424.
  • 13. Kikuchi, T., Hashimoto, K., Kitamura, T.I., Tachihara, H. and Fejer, B. (2003). Equatorial counterelectrojets during substorms. J. Geophys. Res.: Space Phys.108 (A11).
  • 14. Fejer, B.G., Jensen, J.W., Kikuchi, T., Abdu, M.A., and Chau, J.L. (2007). Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res-Space 112 (A10).
  • 15. Joshua, B., Adeniyi, J., Adimula, I., Abbas, M. and Adebiyi, S. (2011). The effect of magnetic storm of May 2010 on the F2 layer over the Ilorin ionosphere. World J. Young Res 1:71.
  • 16. Adeniyi, J.O. (1986). Magnetic Storm Effects on the Morphology of the Equatorial F2-Layer. J Atmos Terr Phys 48:695-702.
  • 17. D’ujanga, F., Baki, P., Olwendo, J. and Twinamasiko, B. (2013). Total electron content of the ionosphere at two stations in East Africa during the 24–25 October 2011 geomagnetic storm. Adv. Space Res. 51:712-21.
  • 18. Alçay, S. and Öztan, G. (2016). Manyetik Fırtınalı ve Fırtınasız Günlerde IRI-PLAS ve IRI-2012 Modellerinin TEC Kestirim Performanslarının İncelenmesi. Electronic J. Map Technologies, 8(2): 131-140.
  • 19. Rao, P.V.S.R., Krishna, S.G., Niranjan, K and Prasad, D.S.V.V.D. (2006). Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004-2005. Ann Geophys-Germany 24:3279-92.
  • 20. Yizengaw, E., Moldwin, M., Galvan, D., Iijima, B., Komjathy, A. and Mannucci, A. (2008). Global plasmaspheric TEC and its relative contribution to GPS TEC. J. Atmos. Sol.-Terr. Phy. 70:1541-8.
  • 21. De Jesus, R., Sahai, Y., Guarnieri, F., Fagundes, P., De Abreu, A., et al. (2012). Ionospheric response of equatorial and low latitude F-region during the intense geomagnetic storm on 24–25 August 2005. Adv. Space Res. 49:518-29.
  • 22. de Jesus, R., Fagundes, P.R., Coster, A., Bolaji, O.S., Sobral, J.H.A., et al. (2016). Effects of the intense geomagnetic storm of September-October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle. J. Atmos. Sol.-Terr. Phy. 138:93-105.
  • 23. de Abreu, A., Martin, I., Fagundes, P., Venkatesh, K., Batista, I., et al. (2017). Ionospheric F-region observations over American sector during an intense space weather event using multi-instruments. J. Atmos. Sol.-Terr. Phy. 156:1-14.
  • 24. de Abreu, A.J., Fagundes, P.R., Gende, M., Bolaji, O.S., de Jesus, R. and Brunini, C. (2014). Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24. Adv. Space Res. 53:1313-28.
  • 25. Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., et al. 2015. Influence of geomagnetic storms of September 26-30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects. Geomagn Aeronomy+ 55:744-62.
  • 26. Mukherjee, S., Sarkar, S., Purohit, P., Gwal, A. 2010. Effect of geomagnetic storms in the Equatorial Anomaly Region observed from ground based data. International J. Geomatics-Geosci. 1:477.
  • 27. Manju, G., Pant, T.K., Ravindran, S. and Sridharan, R. (2009). On the response of the equatorial and low latitude ionospheric regions in the Indian sector to the large magnetic disturbance of 29 October 2003. Proc. Ann. Geophys- Atmos. Hydr. 27:2539.
  • 28. Bilitza, D. (2001). International Reference Ionosphere 2000. Radio Sci., 36:261-75.
  • 29. Arikan, F., Nayir, H., Sezen, U. and Arikan, O. (2008). Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci., 43.
  • 30. Arikan, F., Erol, C.B. and Arikan, O. (2003). Regularized estimation of vertical total electron content from Global Positioning System data. J. Geophys. Res-Space, 108.
  • 31. Eftaxiadis, K., Cervera, M.A. and Thomas, R.M. (1999). A Global Positioning System Receiver for Monitoring Ionospheric Total Electron Content, DTIC Document.
  • 32. Bilitza, D. (2003). International reference ionosphere 2000: Examples of improvements and new features. Description of the Low Latitude and Equatorial Ionosphere in the International Reference Ionosphere 31:757-67.
  • 33. Nava, B., Coisson, P. and Radicella, S.M. (2008). A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phy. 70:1856-62.
  • 34. Coisson, P., Radicella, S.M., Nava, B. and Leitinger, R. (2008). Low and equatorial latitudes topside in NeQuick. J. Atmos. Sol.-Terr. Phy., 70:901-6.
  • 35. Tariku, Y.A. (2015). TEC prediction performance of the IRI-2012 model over Ethiopia during the rising phase of solar cycle 24 (2009-2011). Earth Planets Space 67.
  • 36. Kumar, S. (2016). Performance of IRI-2012 model during a deep solar minimum and a maximum year over global equatorial regions. J Geophys Res-Space 121:5664-74.
  • 37. Adebiyi, S.J., Adimula, I.A., Oladipo, O.A. and Joshua, B.W. (2016). Assessment of IRI and IRI-Plas models over the African equatorial and low-latitude region. J Geophys Res-Space 121:7287-300.
  • 38. Chakraborty, M., Kumar, S., De, B.K. and Guha, A. (2015). Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector. J Earth Syst Sci 124:1115-26.
  • 39. Themens, D.R. and Jayachandran, P.T. (2016). Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content. J Geophys Res-Space 121:3793-807.
  • 40. Li, S.H., Li, L.H. and Peng, J.H. (2016). Variability of Ionospheric TEC and the Performance of the IRI-2012 Model at the BJFS Station, China. Acta Geophys 64:1970-87.
  • 41. Akala, A.O., Somoye, E.O., Adewale, A.O., Ojutalayo, E.W., Karia, S.P., et al. (2015). Comparison of GPS-TEC observations over Addis Ababa with IRI-2012 model predictions during 2010-2013. Adv. Space Res. 56:1686-98.
  • 42. Kurt, K., Yeşil, A., Sağir, S. and Atici, R. (2016). The Relationship of Stratospheric QBO with the Difference of Measured and Calculated NmF2. Acta Geophys. 64:2781-93
  • 43. Sezen, U., Arikan, F., Arikan, O., Ugurlu, O. and Sadeghimorad, A. (2013). Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather 11:297-305.
  • 44. Knyazeva, I.S., Makarenko, N.G., Kuperin, Y.A. and Dmitrieva, L.A. (2016). The new approach for dynamical regimes detection in geomagnetic time series. J Phys Conf Ser., 675.
  • 45. Basu, S., Basu, S., Rich, F., Groves, K., MacKenzie, E., et al. (2007). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. J. Geophys. Res.: Space Phys. 112.
  • 46. Basu, S., Basu, S., Groves, K., Yeh, H.C., Su, S.Y., et al. (2001). Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophys. Res. Lett. 28:3577-80.
  • 47. Buonsanto, M.J. (1999). Ionospheric storms—A review. Space Sci.Rev., 88:563-601.
  • 48. Adebiyi, S., Adimula, I., Oladipo, O., Joshua, B., Adebesin, B. and Ikubanni, S. (2014). Ionospheric response to magnetic activity at low and mid-latitude stations. Acta Geophys. 62:973-89.
  • 49. Adewale, A. 2013. Ionospheric effects of geomagnetic storms at Hobart and comparisons with IRI model predictions. J. Sci. Res. Dev. 14.
  • 50. Knyazeva, I., Makarenko, N., Kuperin, Y., Dmitrieva, L. (2016). The new approach for dynamical regimes detection in geomagnetic time series. Proc. J.Phys.: Conference Series, 675:032028: IOP Publishing.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Bölüm MBD
Yazarlar

Ramazan Atıcı

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 23 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 29 Sayı: 2

Kaynak Göster

APA Atıcı, R. (2017). IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(2), 231-240.
AMA Atıcı R. IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2017;29(2):231-240.
Chicago Atıcı, Ramazan. “IRI Ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 2 (Ekim 2017): 231-40.
EndNote Atıcı R (01 Ekim 2017) IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29 2 231–240.
IEEE R. Atıcı, “IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, ss. 231–240, 2017.
ISNAD Atıcı, Ramazan. “IRI Ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29/2 (Ekim 2017), 231-240.
JAMA Atıcı R. IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29:231–240.
MLA Atıcı, Ramazan. “IRI Ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, 2017, ss. 231-40.
Vancouver Atıcı R. IRI ve IONOLAB Toplam Elektron İçeriğinin Şiddetli Jeomanyetik Fırtınalara Tepkisinin Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29(2):231-40.