Cu/NiCoBi Elektrotun Hidrojen Gazı Eldesinde Katot Olarak Kullanımı ve Katalitik Etkisinin Zamanla Değişiminin Belirlenmesi
Yıl 2018,
Cilt: 30 Sayı: 2, 33 - 38, 19.09.2018
Mehmet Erman Mert
,
Başak Doğru Mert
Öz
Bu
çalışmada bakır (Cu) yüzeyinde elektrokimyasal yöntemle nikel-kobalt-bizmut
(NiCoBi) üçlü kaplama oluşturulmuş (Cu/NiCoBi) ve alkali suyun elektrolizi ile
hidrojen gazı eldesindeki performansı incelenmiştir. Bu amaçla; hidrojen aşırı
gerilimleri, hidrojen gazı hacimleri, katodik polarizasyon ölçümleri ve farklı
aşırı gerilimlerde elektrokimyasal impedans spektroskopisi (EIS) ölçümleri elde
edilmiştir. Elektrotların elektrokatalitik etkilerinin zamanla değişiminin
belirlenmesi için elektroliz hücresine 168 saat boyunca 100 mA cm-2
sabit akım yoğunluğu uygulanmıştır ve farklı zaman aralıklarında
elektrokimyasal ölçümler gerçekleştirilmiştir. Elde edilen bulgulara göre; Cu/NiCoBi elektrotun hidrojen aşırı gerilimi,
Cu ve diğer ikili kaplamalardan (Cu/NiCo, Cu/NiBi) oldukça düşüktür. Cu/NiCoBi
elektrot 168 saatlik elektroliz süresi boyunca etkinliğini korumuştur.
Kaynakça
- 1. Chanda, D., Hnat, J., Paidar, M., Schauer, J., and Bouzek, K. (2015). Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders. Journal of Power Sources, 285: 217-226.
2. Chen, Z., Ma, Z., Song, J., Wang, L., and Shao, G. (2016). Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution. Journal of Power Sources, 34: 86-96.
3. Diaz, L.A., Hnat, J., Heredia, N., Bruno, M.M., Viva, F.A., Paidar, M., Corti, H.R., Bouzek, K. and Abuin, G.C. (2016). Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance. Journal of Power Sources, 312: 128-136.
4. Solmaz, R., Döner, A., Doğrubaş, M., Erdoğan, İ.Y. and Kardaş, G. (2016). Enhancement of electrochemical activity of Raney type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis. International Journal of Hydrogen Energy, 41: 1432-1440.
5. Ma, Z., Li, R., Wang, M., Meng, H., Zhang, F., Bao, X.Q., Tang, B. and Wang, X. (2016). Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 219: 194-203.
6. Müller, C.I., Sellschopp, K., Tegel, M., Rauscher, T., Kieback, B. and Röntzsch, L. (2016). The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction. Journal of Power Sources, 304: 196-206.
7. Fiegenbaum, F., Souza, M.O., Becker, M.R., Martini, M.A. and Souza, R.F. (2015). Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte. Journal of Power Sources, 280: 12-17.
8. Tufa, R.A., Rugiero, E., Chanda, D., Hnat, J., Baak, W., Veerman, J., Fontananova, E., Profio, G.D., Drioli, E., Bouzek, K. and Curcio, E. (2016). Salinity gradient power reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production. Journal of Membrane Science, 514: 155-164.
9. Suermann, M., Schmidt, T.J. and Büchi, F.N. (2016). Cell Performance Determining Parameters in High Pressure Water Electrolysis. Electrochimica Acta, 211: 989-987.
10. Solmaz, R., Döner, A., Şahin, İ., Yüce, A.O., Kardaş, G., Yazıcı, B. and Erbil, M. (2009). The stability of NiCoZn electrocatalyst for hydrogen evolution activity in alkaline solution during long-term electrolysis. International Journal of Hydrogen Energy, 34: 7910-7918.
11. Lupi, C., Dell’era, A., Pasquali, M. (2014). In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction. International Journal of Hydrogen Energy, 39: 1932-1940.
12. Mert, M.E. and Kardaş, G. (2011). Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium. Journal of Alloys and Compounds, 509: 9191-9194.
13. Yazıcı, B., Tatlı, G., Galip, H., Erbil, M. (1995). Investigation of Suitable Cathodes for the Production of Hydrogen Gas by Electrolysis. International Journal of Hydrogen Energy, 20: 957-965.
14. Bockris, J.O.M., Reddy, A.K.N. (1923). Modern electrochemistry. Kluwer Academic Plenum Publishers, 1670-1671.
15. Cardona, I.H., Ortega, E. and Herranz, V.P. (2011). Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta, 56: 1308-1315.
16. Santos, D.M.F., Sequeira, C.A.C. and Figueiredo, J.L. (2013). Hydrogen production by alkaline water electrolysis. Quimica Nova, 36 (8): 1176-1193.
Yıl 2018,
Cilt: 30 Sayı: 2, 33 - 38, 19.09.2018
Mehmet Erman Mert
,
Başak Doğru Mert
Kaynakça
- 1. Chanda, D., Hnat, J., Paidar, M., Schauer, J., and Bouzek, K. (2015). Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders. Journal of Power Sources, 285: 217-226.
2. Chen, Z., Ma, Z., Song, J., Wang, L., and Shao, G. (2016). Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution. Journal of Power Sources, 34: 86-96.
3. Diaz, L.A., Hnat, J., Heredia, N., Bruno, M.M., Viva, F.A., Paidar, M., Corti, H.R., Bouzek, K. and Abuin, G.C. (2016). Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance. Journal of Power Sources, 312: 128-136.
4. Solmaz, R., Döner, A., Doğrubaş, M., Erdoğan, İ.Y. and Kardaş, G. (2016). Enhancement of electrochemical activity of Raney type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis. International Journal of Hydrogen Energy, 41: 1432-1440.
5. Ma, Z., Li, R., Wang, M., Meng, H., Zhang, F., Bao, X.Q., Tang, B. and Wang, X. (2016). Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 219: 194-203.
6. Müller, C.I., Sellschopp, K., Tegel, M., Rauscher, T., Kieback, B. and Röntzsch, L. (2016). The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction. Journal of Power Sources, 304: 196-206.
7. Fiegenbaum, F., Souza, M.O., Becker, M.R., Martini, M.A. and Souza, R.F. (2015). Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte. Journal of Power Sources, 280: 12-17.
8. Tufa, R.A., Rugiero, E., Chanda, D., Hnat, J., Baak, W., Veerman, J., Fontananova, E., Profio, G.D., Drioli, E., Bouzek, K. and Curcio, E. (2016). Salinity gradient power reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production. Journal of Membrane Science, 514: 155-164.
9. Suermann, M., Schmidt, T.J. and Büchi, F.N. (2016). Cell Performance Determining Parameters in High Pressure Water Electrolysis. Electrochimica Acta, 211: 989-987.
10. Solmaz, R., Döner, A., Şahin, İ., Yüce, A.O., Kardaş, G., Yazıcı, B. and Erbil, M. (2009). The stability of NiCoZn electrocatalyst for hydrogen evolution activity in alkaline solution during long-term electrolysis. International Journal of Hydrogen Energy, 34: 7910-7918.
11. Lupi, C., Dell’era, A., Pasquali, M. (2014). In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction. International Journal of Hydrogen Energy, 39: 1932-1940.
12. Mert, M.E. and Kardaş, G. (2011). Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium. Journal of Alloys and Compounds, 509: 9191-9194.
13. Yazıcı, B., Tatlı, G., Galip, H., Erbil, M. (1995). Investigation of Suitable Cathodes for the Production of Hydrogen Gas by Electrolysis. International Journal of Hydrogen Energy, 20: 957-965.
14. Bockris, J.O.M., Reddy, A.K.N. (1923). Modern electrochemistry. Kluwer Academic Plenum Publishers, 1670-1671.
15. Cardona, I.H., Ortega, E. and Herranz, V.P. (2011). Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta, 56: 1308-1315.
16. Santos, D.M.F., Sequeira, C.A.C. and Figueiredo, J.L. (2013). Hydrogen production by alkaline water electrolysis. Quimica Nova, 36 (8): 1176-1193.