Merkezi Örüntü Üreteçlerinin Robotlarda Hareket Kontrolü için Çeşitli Uygulamaları: Bir Araştırma
Yıl 2018,
Cilt: 30 Sayı: 2, 277 - 294, 19.09.2018
Deniz Korkmaz
Gonca Özmen Koca
,
Cafer Bal
Öz
Bu çalışmada, hızla
gelişen robotik uygulamalarında sıklıkla kullanılan Merkezi Örüntü Üreteci
(MÖÜ) yapıları ve bu yapılar ile robotların akıllı hareket kontrolü üzerine son
20 yılda ortaya çıkan gelişmeler detaylı bir şekilde incelenmiş ve gelecekte
yapılabilecek çalışmalar ile ilgili bir ön değerlendirme sunulmuştur. Literatürde
yer alan MÖÜ kontrol modelleri ve buna bağlı farklı yapılar, tasarım ve
uygulama kolaylığı dahil olmak üzere, modellerin göreceli avantajları ve
dezavantajlarına odaklanarak gözden geçirilmiştir. Biyolojik bir sinir ağı
görevi gören MÖÜ’ler, herhangi bir geri besleme veya giriş sinyaline ihtiyaç
duymadan sürekli salınımlı, dayanıklı ve ritmik çıkışlar üretebilir. Robotik mühendisliği
çalışmalarındaki temel fikir, çok eklemli veya çok serbestlik dereceli robotların
verimli ve dayanıklı bir şekilde hareketlerinin koordinasyonunu sağlamaktır. MÖÜ tabanlı kontrolör tasarımında ve uygulamasında
olası alternatiflerden kaynaklanan temel konular, farklı hareket kontrol
yöntemleri ve uygulamalarına ilişkin incelemeler sunulmuştur. Bu alanda
kullanılan yöntemler uygulanan robot sınıflandırmaları ile birlikte
özetlenmiştir.
Kaynakça
- 1. Wang, M., Yu, J. and Tan, M. (2014). CPG-based sensory feedback control for bio-inspired multimodal swimming. International Journal of Advanced Robotic Systems, 11: 1–11.
2. Yu, J., Wang, M., Su, Z., Tan, M. and Zhang, J. (2013). Dynamic modeling of a CPG-governed multijoint robotic fish. Advanced Robotics, 27(4): 275–285.
3. Lachat, D., Crespi, A. and Ijspeert, A.J. (2006). BoxyBot : a swimming and crawling fish robot controlled by a central pattern generator. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, Pisa, Italy, 20-22 Feb., 643-648.
4. Crespi, A., Lachat, D., Pasquier, A. and Ijspeert, A.J. (2008). Controlling swimming and crawling in a fish robot using a central pattern generator. Autonomous Robots, 25(1–2): 3–13.
5. Huss, M. (2007). Computational modeling of the lamprey cpg. PhD Thesis, Stockholm University.
6. Ijspeert, A.J. (1998). Design of artificial neural oscillatory circuits for the control of lamprey-and salamander-like locomotion using evolutionary algorithms. PhD Thesis, University of Edinburgh.
7. Marbach, D. (2005). Evolution and online optimization of central pattern generators for modular robot locomotion. Master Thesis, School of Computer and Communication Sciences, Swiss Federal Institute of Technology Lausanne.
8. Li, G. (2013). Hierarchical control of limbless locomotion using a bio-inspired cpg model. PhD Thesis, University of Hamburg.
9. Crespi, A. (2007). Design and control of amphibious robots with multiple degrees of freedom. PhD Thesis, Lausanne, EPFL.
10. Yu, J., Tan, M., Chen, J., and Zhang, J. (2014). A survey on cpg-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems, 25(3): 441–456.
11. Ijspeert, A.J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4): 642–653.
12. Dörfler, F. and Bullo, F. (2014). Synchronization in complex networks of phase oscillators: a survey. Automatica, 50(6): 1539–1564.
13. Wu, Q.D., Liu, C.J., Zhang, J.Q. and Chen, Q.J. (2009). Survey of locomotion control of legged robots inspired by biological concept. Science in China, Series F: Information Sciences, 52(10): 1715–1729.
14. Mackay-lyons, M. (2012). Central pattern generation of locomotion : a review of the evidence. Physical Therapy, 82(1): 69–83.
15. Li, G., Zhang, H., Zhang, J. and Bye, R.T. (2014). Development of adaptive locomotion of a caterpillar-like robot based on a sensory feedback cpg model. Advanced Robotics, 28(6): 389–401.
16. Adak., Ö.K. (2013). Quadruped locomotion reference synthesis with central pattern generators tuned by evolutionary algorithms. Master Thesis, Sabanci University.
17. Hu, Y., Liang, J. and Wang, T. (2014). Parameter synthesis of coupled nonlinear oscillators for cpg-based robotic locomotion. IEEE Transactions on Industrial Electronics, 61(11): 6183–6193.
18. Righetti, L., Buchli, J. and Ijspeert, A.J. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena, 216(2): 269–281.
19. Wu, Z., Yu, J., Tan, M. and Zhang, J. (2014). Kinematic comparison of forward and backward swimming and maneuvering in a self-propelled sub-carangiform robotic fish. Journal of Bionic Engineering, 11(2): 199–212.
20. Jadbabaie, A., Motee, N., Barahona, M. (2004). On the stability of the kuramoto model of coupled nonlinear oscillators, American Control Conference, Boston, M.A, USA, 30 June-2 July, 4296-4301.
21. Chengju, L., Danwei, W., Erik, D., G., Qijun, C. (2016). Adaptive walking control of biped robots using online trajectory gneration method based on neural oscillators. Journal of Bionic Engineering, 13(4): 572–584.
22. Taga, G. (1995). A model of the neuro-musculo-skeletal system for human locomotion - I. Emergence of basic gait. Biological Cybernetics, 73(2): 97–111.
23. Ekeberg, Ö. (1993). A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69(5–6): 363–374.
24. Yu, J., Wu, Z., Wang, M. and Tan, M., (2016). CPG network optimization for a biomimetic robotic fish via pso. IEEE Transactions on Neural Networks and Learning Systems, 27(9): 1962–1968.
25. Li, G., Zhang, H., Herrero-Carron, F., Hildre, H.P. and Zhang, J. (2011). A novel mechanism for caterpillar-like locomotion using asymmetric oscillation. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Budapest, Hungary, 3-7 July, 164–169.
26. Li, G., Deng, Y., Osen, O.L., Bi, S. and Zhang, H. (2016). A bio-inspired swimming robot for marine aquaculture applications: from concept-design to simulation. OCEANS 2016, Shanghai, China, 10-13 April, 1-7.
27. Li, G., Zhang, H., Zhang, J. and Hildre HP. (2014). An approach for adaptive limbless locomotion using a cpg-based reflex mechanism. Journal of Bionic Engineering, 11(3): 389–399.
28. Li, L., Wang, C. and Xie, G. (2015). A general cpg network and its implementation on the microcontroller. Neurocomputing, 167: 299–305.
29. Wang, W. and Xie, G. (2014). CPG-based locomotion controller design for a boxfish-like robot. International Journal of Advanced Robotic Systems, 11(6): 87.
30. Li, G., Zhang, H., Li, W., Hildre, H.P. and Zhang, J. (2014). Design of neural circuit for sidewinding of snake-like robots. IEEE International Conference on Information and Automation, ICIA 2014, Hailar, China, 28-30 July, 333–338.
31. Ding, R., Yu, J., Yang, Q. and Tan, M. (2013). Dynamic modelling of a cpg-controlled amphibious biomimetic swimming robot. International Journal of Advanced Robotic Systems, 10(4): 199.
32. Yu, J., Wang, C. and Xie, G. (2016). Coordination of multiple robotic fish with applications to underwater robot competition. IEEE Transactions on Industrial Electronics, 63(2): 1280–1288.
33. Goldschmidt, D., Wörgötter, F. and Manoonpong, P. (2014). Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Frontiers in Neurorobotics, 8: 1–16.
34. Yu, J., Wang, K., Tan, M. and Zhang, J. (2014). Design and control of an embedded vision guided robotic fish with multiple control surfaces. The Scientific World Journal, 2014: 1-14
35. Mili, P., Cizek, P. and Faigl, J. (2016). On chaotic oscillator-based central pattern generator for motion control of hexapod walking robot. CEUR Workshop Proceedings, 1649: 131–137.
36. Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6): 1569–1572.
37. Lin K.K. (2006). Entrainment and chaos in a pulse-driven hodgkin--huxley oscillator. SIAM Journal on Applied Dynamical Systems, 5(2): 179–204.
38. Thurman, Z. (2013). Dynamics of the fitzhugh-nagumo neuron model, Senior Project, California Polytechnic State University.
39. Rigatos, G. (2014). Robust synchronization of coupled neural oscillators using the derivative-free nonlinear kalman filter. Cognitive Neurodynamics, 8(6): 465–478.
40. Wen, P., Linsen, X., Baolin, F. and Zhong, W. (2015). CPG control model of snake-like robot parameters of optimization based on ga. IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, Zhuhai, China, 6-9 Dec., 1944–1949.
41. Herrero-Carron, F. (2011). Novel central pattern generator elements for autonomous modular robots. PhD Thesis, Autonoma De Madrid Universiy.
42. Herrero-Carron, F., Rodriguez, F.B. and Varona, P. (2011). Bio-inspired design strategies for central pattern generator control in modular robotics, Bioinspiration and Biomimetics, 6(1): 016006.
43. Ijspeert, A.J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics, 84(5): 331–348.
44. Patel, L.N., Murray, A. and Hallam, J. (2007). Super-lampreys and wave energy: optimised control of artificially-evolved, simulated swimming lamprey. Neurocomputing, 70(7–9): 1139–1154.
45. Donati, E., Corradi, F., Stefanini, C. and Indiveri G. (2014). A spiking implementation of the lamprey’s central pattern generator in neuromorphic vlsi. IEEE Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22-24 Oct., 1-4.
46. Zhang, X., Xiong, J., Weng, S., Li, H., Chen, M., Gan, Y., Zhao, Q., Xia, Z. (2015). A modified gait planning method for biped robot based on central pattern generators. IEEE International Conference on Information and Automation, Lijiang, China, 8-10 Aug., 1551–1555.
47. Ryu, J.K., Chong, N.Y., You, B.J. and Christensen, H. (2009). Adaptive cpg based coordinated control of healthy and robotic lower limb movements. IEEE International Workshop on Robot and Human Interactive Communication, Toyama, Japan, 27 Sept.-2 Oct., 122–127.
48. Avrin, G., Makarov, M., Rodriguez-Ayerbe, P. and Siegler, I.A. (2016). Particle swarm optimization of matsuoka’s oscillator parameters in human-like control of rhythmic movements. Proceedings of the American Control Conference, Boston, MA, USA, 6-8 July, 342–347.
49. Heim, S.W., Ajallooeian, M., Eckert, P., Vespignani, M. and Ijspeert, A.J. (2015). On designing an active tail for body-pitch control in legged robots via decoupling of control objectives. Assistive Robotics: Proceedings of the 18th International Conference on Climbing and Walking Robots (CLAWAR), 43(3): 338–346.
50. Buchli, J., Iida, F. and Ijspeert A.J. (2006). Finding resonance: adaptive frequency oscillators for dynamic legged locomotion. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China. 9-15 Oct., 3903–3909.
51. Li, X., Wang, W. and Yi, J. (2015). Gait transition based on cpg modulation for quadruped locomotion. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Busan, South Korea, 7-11 July, 500–505.
52. ZHANG, J. (2011). Dynamic walking of aibo with hopf oscillators. Chinese Journal of Mechanical Engineering, 24(4): 612.
53. Manoonpong, P., Pasemann, F. and Wörgötter, F. (2008). Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robotics and Autonomous Systems, 56(3): 265–288.
54. Steingrube, S., Timme, M., Wörgötter, F. and Manoonpong, P. (2010). Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 6(3): 224–230.
55. Zhong, G., Chen, L., Jiao, Z., Li, J. and Deng, H. (2017). Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons. IEEE Transactions on Control Systems Technology, 1–13.
56. Xiong, X., Wörgötter, F. and Manoonpong P. (2014). Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification. Robotics and Autonomous Systems, 62(12): 1777–1789.
57. Manoonpong, P., Parlitz, U. and Wörgötter, F. (2013). Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Frontiers in Neural Circuits, 7:, 1–28.
58. Wu, Z.X., Yu, J.Z., Su. Z.S., Tan, M. and Li, Z.L. (2015). Towards an esox lucius inspired multimodal robotic fish. Science China Information Sciences, 58(5): 1–13.
59. Ijspeert, A.J. and Crespi, A. (2007). Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April, 262–268.
60. Crespi, A. and Ijspeert, A.J. (2006). AmphiBot II : an amphibious snake robot that crawls and swims using a central pattern generator. 9th International Conference on Climbing and Walking Robots, Brussels, Belgium, September, 19-27
61. Niu, X., Xu, J., Ren, Q. and Wang, Q. (2014). Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Transactions on Industrial Electronics, 61(9): 4780–4787.
62. Niu, X. and Xu, J. (2014). Modeling, control and locomotion planning of an anguilliform robotic fish, Unmanned Systems, 2(4): 295-321.
63. Zhang, D., Hu, D., Shen, L. and Xie, H. (2006). A bionic neural network for fish-robot locomotion. Journal of Bionic Engineering, 3(4): 187–194.
64. Li, L., Wang, C. and Xie, G. (2014). Modeling of a carangiform-like robotic fish for both forward and backward swimming: based on the fixed point. IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May-7 June, 800–805.
65. Zhao, W., Yu, J., Fang, Y. and Wang, L. (2006). Development of multi-mode biomimetic robotic fish based on central pattern generator. IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 9-15 Oct., 3891–3896.
66. Hu, Y., Zhang, S., Liang, J. and Wang, T. (2014). Development and cpg-based control of a biomimetic robotic fish with advanced underwater mobility. IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May-7 June, 813–818.
67. Hu, Y., Liang, J., and Wang, T. (2015). Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising. Bioinspiration & biomimetics, 10(2): 026006.
68. Sfakiotakis, M., Gliva, R. and Mountoufaris, M. (2016). Steering-plane motion control for an underwater robot with a pair of undulatory fin propulsors. 24th Mediterranean Conference on Control and Automation, MED 2016, Athens, Greece, 21-24 June, 496–503.
69. Seo, K., Chung, S.J. and Slotine, J.J.E. (2010). CPG-based control of a turtle-like underwater vehicle. Autonomous Robots, 28(3): 247–269.
70. Chung, S-J. and Dorothy, M. (2010). Neurobiologically ınspired control of engineered flapping flight. Journal of Guidance, Control, and Dynamics, 33(2): 440–453.
71. Kwon, J., Yang, W., Lee, H., Bae, J.H. and Oh, Y. (2014). Biologically inspired control algorithm for an unified motion of whole robotic arm-hand system. IEEE International Workshop on Robot and Human Interactive Communication, Edinburgh, UK, 25-29 Aug., 398–404.
72. Kwon, J. and Kim, H. (2016). The enhanced performance of a robotic arm control based on neural oscillator networks. 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23-26 Oct., 803-808.
73. Chowdhury, A.R. and Panda, S.K. (2015). Finding answers to biological control methods using modulated patterns : an application to bio-inspired robotic fish. IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26-30 May., 3146–3153.
74. Liu, G.L., Habib, M.K., Watanabe, K. and Izumi, K. (2008). Central pattern generators based on matsuoka oscillators for the locomotion of biped robots. Artificial Life and Robotics, 12(1–2): 264–269.
75. Kim, D.H., Leei S. and Park, J. (2008). Design of central pattern generators (cpgs) for trajectory tracking of fish-mimetic robots. 7th WSEAS international conference on computational intelligence, man-machine systems and cybernetics, (WSEAS), 191–196.
76. Ijspeert, A.J., Crespi, A. and Cabelguen, J.M. (2005). Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics, 3(3): 171–196.
77. Yu, J., Chen, S., Wu, Z. and Wang, W. (2016). On a miniature free-swimming robotic fish with multiple sensors. International Journal of Advanced Robotic Systems, 13(2): 62.
78. Righetti, L. and Ijspeert, A.J. (2008). Pattern generators with sensory feedback for the control of quadruped locomotion. IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19-23 May, 819–824.
79. Wang, T., Hu, Y. and Liang, J. (2013). Learning to swim: a dynamical systems approach to mimicking fish swimming with cpg. Robotica, 31(3): 361–369.
80. Ahmadizadeh, S., Nesic, D., Grayden, D.B. and Freestone, D.R. (2015). Analytic synchronization conditions for a network of wilson and cowan oscillators. IEEE Conference on Decision and Control, Osaka, Japan, 15-18 Dec., 3104–3109.
81. Wright, J. and Jordanov, I. (2015). Intelligent approaches in locomotion - a review. Journal of Intelligent and Robotic Systems: Theory and Applications, 80(2): 255–277.
82. Fang, Y., Hu, J., Liu, W., Chen, B., Qi, J. and Ye, X. (2016). A cpg-based online trajectory planning method for industrial manipulators. Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2016, Tokyo, Japan, 20-22 July, 41–46.
83. Wang, C., Xie, G., Wang, L. and Cao, M. (2011). CPG-based locomotion control of a robotic fish: using linear oscillators and reducing control parameters via pso. International Journal of Innovative Computing, Information and Control, 7(7 B): 4237–4249.
84. Li, L., Wang, C., Xie, G. and Shi, H. (2014). Digital implementation of cpg controller in avr system. 33rd Chinese Control Conference, CCC 2014, Nanjing, China, 28-30 July, 8293–8298.
85. Wang, W., Guo, J., Wang, Z. and Xie, G. (2013). Neural controller for swimming modes and gait transition on an ostraciiform fish robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013, Wollongong, NSW, Australia, 9-12 July, 1564–1569.
86. Wang, W., Xie, G. and Shi, H. (2014). Dynamic modeling of an ostraciiform robotic fish based on angle of attack theory. International Joint Conference on Neural Networks, Beijing, China, 6-11 July, 3944–3949.
87. Wang, W., Gu, D. and Xie, G. (2017). Autonomous optimization of swimming gait in a fish robot with multiple onboard sensors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13.
88. Zhang, S., Qian, Y., Liao, P., Qin, F. and Yang, J. (2016). Design and control of an agile robotic fish with ıntegrative biomimetic mechanisms. IEEE/ASME Transactions on Mechatronics, 21(4): 1846–1857.
89. Zhu, M., Xu, W. and Cheng, L.K. (2017). Esophageal peristaltic control of a soft-bodied swallowing robot by the central pattern generator. IEEE/ASME Transactions on Mechatronics, 22(1): 91–98.
90. Hu, Y., Tian, W., Liang, J. and Wang, T. (2011). Learning fish-like swimming with a cpg-based locomotion controller. IEEE Int. Conf. on Intelligent Robots and Systems, San Francisco, CA, USA, 25-30 Sept., 1863–1868.
91. Niu, X. (2013). Modeling, control and locomotion planning of an anguilliform fish robot. PhD Thesis, Harbin Institute of Technology, China.
92. Zhou, C. and Low, K.H. (2014). On-line optimization of biomimetic undulatory swimming by an experiment-based approach. Journal of Bionic Engineering, 11(2): 213–225.
93. Wang, L., Wang, S., Cao, Z., Tan, M., Zhou, C., Sang, H. and Shen Z. (2005). Motion control of a robot fish based on cpg. Proceedings of the IEEE International Conference on Industrial Technology, Hong Kong, China, 14-17 Dec., 1263–1268.
94. Hu, Y., Zhao, W., Wang, L. and Jia, Y. (2008). Neural-based control of modular robotic fish with multiple propulsors. IEEE Conference on Decision and Control, Cancun, Mexico, 9-11 Dec., 5232–5237.
95. Yu, J., Wang, M., Su Z., Tan, M. and Zhang, J. (2011). Dynamic modeling and its application for a cpg-coupled robotic fish. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9-13 May, 159-164.
96. Wu, Z., Yu, J., Su, Z. and Tan, M. (2013). An improved multimodal robotic fish modelled after esox lucíus. IEEE International Conference on Robotics and Biomimetics, ROBIO 2013, Shenzhen, China, 12-14 December, 516–521.
97. Wu, Z., Yu, J., Su, Z. and Tan, M. (2014). Implementing 3-d high maneuvers with a novel biomimetic robotic fish, IFAC Proceedings Volumes (IFAC-PapersOnline), 47(3): 4861–4866.
98. Wang, M., Yu, J.Z., Tan, M. and Zhang, J.W. (2012). Multimodal swimming control of a robotic fish with pectoral fins using a cpg network. Chinese Science Bulletin, 57(10): 1209–1216.
99. Wu, Z., Yu, J. and Tan, M. (2012). CPG parameter search for a biomimetic robotic fish based on particle swarm optimization. IEEE International Conference on Robotics and Biomimetics, ROBIO 2012, Guangzhou, China, 11-14 Dec., 563–568.
100. Haitao, Y., Haibo, G., Liang D., Mantian Li, Z., and Liu G. (2016). Gait generation with smooth transition using cpg-based locomotion control for hexapod walking robot, IEEE Transactions on Industrial Electronics, 63(9): 5488–5500.
101. Gay, S., Santos-Victor, J. and Ijspeert, A.J. (2013). Learning robot gait stability using neural networks as sensory feedback function for central pattern generators. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3-7 Nov., 1–8.
102. Huang, Z. and Wang, W. (2016). Controller-switching based gait transition for a quadruped robot, IEEE International Conference on Mechatronics and Automation, ICMA 2016, Harbin, China, 7-10 Aug., 653–658.
103. Li, X., Wang, W. and Yi, J. (2016). Foot contact force of walk gait for a quadruped robot, IEEE International Conference on Mechatronics and Automation, ICMA 2016, Harbin, China, 7-10 Aug., 659–664.
104. Marbach, D. and Ijspeert, A.J. (2005). Online optimization of modular robot locomotion. IEEE International Conference Mechatronics and Automation, Niagara Falls, Ont., Canada, 29 July-1 Aug., 248–253.
105. Sproewitz, A., Moeckel, R., Maye, J. and Ijspeert, A.J. (2008). Learning to move in modular robots using central pattern generators and online optimization. International Journal of Robotics Research, 27(3–4): 423–443.
106. Wang, Z., Gao, Q. and Zhao, H. (2017). CPG-ınspired locomotion control for a snake robot basing on nonlinear oscillators. Journal of Intelligent and Robotic Systems: Theory and Applications, 85(2): 209–227.
107. Wang, Z., He, B., Shen, R. and Meng, W. (2015). Contact impact inhibition strategy for biped robot walking based on central pattern generator. IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, Zhuhai, China, 6-9 Dec.,733–738.
108. Hong, Y-D. and Lee, B. (2017). Evolutionary optimization approach for optimal hopping of humanoid robots. IEEE Transactıons on Industrıal Electronıcs, 64(2): 1279–1283.
Yıl 2018,
Cilt: 30 Sayı: 2, 277 - 294, 19.09.2018
Deniz Korkmaz
Gonca Özmen Koca
,
Cafer Bal
Kaynakça
- 1. Wang, M., Yu, J. and Tan, M. (2014). CPG-based sensory feedback control for bio-inspired multimodal swimming. International Journal of Advanced Robotic Systems, 11: 1–11.
2. Yu, J., Wang, M., Su, Z., Tan, M. and Zhang, J. (2013). Dynamic modeling of a CPG-governed multijoint robotic fish. Advanced Robotics, 27(4): 275–285.
3. Lachat, D., Crespi, A. and Ijspeert, A.J. (2006). BoxyBot : a swimming and crawling fish robot controlled by a central pattern generator. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, Pisa, Italy, 20-22 Feb., 643-648.
4. Crespi, A., Lachat, D., Pasquier, A. and Ijspeert, A.J. (2008). Controlling swimming and crawling in a fish robot using a central pattern generator. Autonomous Robots, 25(1–2): 3–13.
5. Huss, M. (2007). Computational modeling of the lamprey cpg. PhD Thesis, Stockholm University.
6. Ijspeert, A.J. (1998). Design of artificial neural oscillatory circuits for the control of lamprey-and salamander-like locomotion using evolutionary algorithms. PhD Thesis, University of Edinburgh.
7. Marbach, D. (2005). Evolution and online optimization of central pattern generators for modular robot locomotion. Master Thesis, School of Computer and Communication Sciences, Swiss Federal Institute of Technology Lausanne.
8. Li, G. (2013). Hierarchical control of limbless locomotion using a bio-inspired cpg model. PhD Thesis, University of Hamburg.
9. Crespi, A. (2007). Design and control of amphibious robots with multiple degrees of freedom. PhD Thesis, Lausanne, EPFL.
10. Yu, J., Tan, M., Chen, J., and Zhang, J. (2014). A survey on cpg-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems, 25(3): 441–456.
11. Ijspeert, A.J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4): 642–653.
12. Dörfler, F. and Bullo, F. (2014). Synchronization in complex networks of phase oscillators: a survey. Automatica, 50(6): 1539–1564.
13. Wu, Q.D., Liu, C.J., Zhang, J.Q. and Chen, Q.J. (2009). Survey of locomotion control of legged robots inspired by biological concept. Science in China, Series F: Information Sciences, 52(10): 1715–1729.
14. Mackay-lyons, M. (2012). Central pattern generation of locomotion : a review of the evidence. Physical Therapy, 82(1): 69–83.
15. Li, G., Zhang, H., Zhang, J. and Bye, R.T. (2014). Development of adaptive locomotion of a caterpillar-like robot based on a sensory feedback cpg model. Advanced Robotics, 28(6): 389–401.
16. Adak., Ö.K. (2013). Quadruped locomotion reference synthesis with central pattern generators tuned by evolutionary algorithms. Master Thesis, Sabanci University.
17. Hu, Y., Liang, J. and Wang, T. (2014). Parameter synthesis of coupled nonlinear oscillators for cpg-based robotic locomotion. IEEE Transactions on Industrial Electronics, 61(11): 6183–6193.
18. Righetti, L., Buchli, J. and Ijspeert, A.J. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena, 216(2): 269–281.
19. Wu, Z., Yu, J., Tan, M. and Zhang, J. (2014). Kinematic comparison of forward and backward swimming and maneuvering in a self-propelled sub-carangiform robotic fish. Journal of Bionic Engineering, 11(2): 199–212.
20. Jadbabaie, A., Motee, N., Barahona, M. (2004). On the stability of the kuramoto model of coupled nonlinear oscillators, American Control Conference, Boston, M.A, USA, 30 June-2 July, 4296-4301.
21. Chengju, L., Danwei, W., Erik, D., G., Qijun, C. (2016). Adaptive walking control of biped robots using online trajectory gneration method based on neural oscillators. Journal of Bionic Engineering, 13(4): 572–584.
22. Taga, G. (1995). A model of the neuro-musculo-skeletal system for human locomotion - I. Emergence of basic gait. Biological Cybernetics, 73(2): 97–111.
23. Ekeberg, Ö. (1993). A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69(5–6): 363–374.
24. Yu, J., Wu, Z., Wang, M. and Tan, M., (2016). CPG network optimization for a biomimetic robotic fish via pso. IEEE Transactions on Neural Networks and Learning Systems, 27(9): 1962–1968.
25. Li, G., Zhang, H., Herrero-Carron, F., Hildre, H.P. and Zhang, J. (2011). A novel mechanism for caterpillar-like locomotion using asymmetric oscillation. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Budapest, Hungary, 3-7 July, 164–169.
26. Li, G., Deng, Y., Osen, O.L., Bi, S. and Zhang, H. (2016). A bio-inspired swimming robot for marine aquaculture applications: from concept-design to simulation. OCEANS 2016, Shanghai, China, 10-13 April, 1-7.
27. Li, G., Zhang, H., Zhang, J. and Hildre HP. (2014). An approach for adaptive limbless locomotion using a cpg-based reflex mechanism. Journal of Bionic Engineering, 11(3): 389–399.
28. Li, L., Wang, C. and Xie, G. (2015). A general cpg network and its implementation on the microcontroller. Neurocomputing, 167: 299–305.
29. Wang, W. and Xie, G. (2014). CPG-based locomotion controller design for a boxfish-like robot. International Journal of Advanced Robotic Systems, 11(6): 87.
30. Li, G., Zhang, H., Li, W., Hildre, H.P. and Zhang, J. (2014). Design of neural circuit for sidewinding of snake-like robots. IEEE International Conference on Information and Automation, ICIA 2014, Hailar, China, 28-30 July, 333–338.
31. Ding, R., Yu, J., Yang, Q. and Tan, M. (2013). Dynamic modelling of a cpg-controlled amphibious biomimetic swimming robot. International Journal of Advanced Robotic Systems, 10(4): 199.
32. Yu, J., Wang, C. and Xie, G. (2016). Coordination of multiple robotic fish with applications to underwater robot competition. IEEE Transactions on Industrial Electronics, 63(2): 1280–1288.
33. Goldschmidt, D., Wörgötter, F. and Manoonpong, P. (2014). Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Frontiers in Neurorobotics, 8: 1–16.
34. Yu, J., Wang, K., Tan, M. and Zhang, J. (2014). Design and control of an embedded vision guided robotic fish with multiple control surfaces. The Scientific World Journal, 2014: 1-14
35. Mili, P., Cizek, P. and Faigl, J. (2016). On chaotic oscillator-based central pattern generator for motion control of hexapod walking robot. CEUR Workshop Proceedings, 1649: 131–137.
36. Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6): 1569–1572.
37. Lin K.K. (2006). Entrainment and chaos in a pulse-driven hodgkin--huxley oscillator. SIAM Journal on Applied Dynamical Systems, 5(2): 179–204.
38. Thurman, Z. (2013). Dynamics of the fitzhugh-nagumo neuron model, Senior Project, California Polytechnic State University.
39. Rigatos, G. (2014). Robust synchronization of coupled neural oscillators using the derivative-free nonlinear kalman filter. Cognitive Neurodynamics, 8(6): 465–478.
40. Wen, P., Linsen, X., Baolin, F. and Zhong, W. (2015). CPG control model of snake-like robot parameters of optimization based on ga. IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, Zhuhai, China, 6-9 Dec., 1944–1949.
41. Herrero-Carron, F. (2011). Novel central pattern generator elements for autonomous modular robots. PhD Thesis, Autonoma De Madrid Universiy.
42. Herrero-Carron, F., Rodriguez, F.B. and Varona, P. (2011). Bio-inspired design strategies for central pattern generator control in modular robotics, Bioinspiration and Biomimetics, 6(1): 016006.
43. Ijspeert, A.J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics, 84(5): 331–348.
44. Patel, L.N., Murray, A. and Hallam, J. (2007). Super-lampreys and wave energy: optimised control of artificially-evolved, simulated swimming lamprey. Neurocomputing, 70(7–9): 1139–1154.
45. Donati, E., Corradi, F., Stefanini, C. and Indiveri G. (2014). A spiking implementation of the lamprey’s central pattern generator in neuromorphic vlsi. IEEE Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22-24 Oct., 1-4.
46. Zhang, X., Xiong, J., Weng, S., Li, H., Chen, M., Gan, Y., Zhao, Q., Xia, Z. (2015). A modified gait planning method for biped robot based on central pattern generators. IEEE International Conference on Information and Automation, Lijiang, China, 8-10 Aug., 1551–1555.
47. Ryu, J.K., Chong, N.Y., You, B.J. and Christensen, H. (2009). Adaptive cpg based coordinated control of healthy and robotic lower limb movements. IEEE International Workshop on Robot and Human Interactive Communication, Toyama, Japan, 27 Sept.-2 Oct., 122–127.
48. Avrin, G., Makarov, M., Rodriguez-Ayerbe, P. and Siegler, I.A. (2016). Particle swarm optimization of matsuoka’s oscillator parameters in human-like control of rhythmic movements. Proceedings of the American Control Conference, Boston, MA, USA, 6-8 July, 342–347.
49. Heim, S.W., Ajallooeian, M., Eckert, P., Vespignani, M. and Ijspeert, A.J. (2015). On designing an active tail for body-pitch control in legged robots via decoupling of control objectives. Assistive Robotics: Proceedings of the 18th International Conference on Climbing and Walking Robots (CLAWAR), 43(3): 338–346.
50. Buchli, J., Iida, F. and Ijspeert A.J. (2006). Finding resonance: adaptive frequency oscillators for dynamic legged locomotion. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China. 9-15 Oct., 3903–3909.
51. Li, X., Wang, W. and Yi, J. (2015). Gait transition based on cpg modulation for quadruped locomotion. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Busan, South Korea, 7-11 July, 500–505.
52. ZHANG, J. (2011). Dynamic walking of aibo with hopf oscillators. Chinese Journal of Mechanical Engineering, 24(4): 612.
53. Manoonpong, P., Pasemann, F. and Wörgötter, F. (2008). Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robotics and Autonomous Systems, 56(3): 265–288.
54. Steingrube, S., Timme, M., Wörgötter, F. and Manoonpong, P. (2010). Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 6(3): 224–230.
55. Zhong, G., Chen, L., Jiao, Z., Li, J. and Deng, H. (2017). Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons. IEEE Transactions on Control Systems Technology, 1–13.
56. Xiong, X., Wörgötter, F. and Manoonpong P. (2014). Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification. Robotics and Autonomous Systems, 62(12): 1777–1789.
57. Manoonpong, P., Parlitz, U. and Wörgötter, F. (2013). Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Frontiers in Neural Circuits, 7:, 1–28.
58. Wu, Z.X., Yu, J.Z., Su. Z.S., Tan, M. and Li, Z.L. (2015). Towards an esox lucius inspired multimodal robotic fish. Science China Information Sciences, 58(5): 1–13.
59. Ijspeert, A.J. and Crespi, A. (2007). Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April, 262–268.
60. Crespi, A. and Ijspeert, A.J. (2006). AmphiBot II : an amphibious snake robot that crawls and swims using a central pattern generator. 9th International Conference on Climbing and Walking Robots, Brussels, Belgium, September, 19-27
61. Niu, X., Xu, J., Ren, Q. and Wang, Q. (2014). Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Transactions on Industrial Electronics, 61(9): 4780–4787.
62. Niu, X. and Xu, J. (2014). Modeling, control and locomotion planning of an anguilliform robotic fish, Unmanned Systems, 2(4): 295-321.
63. Zhang, D., Hu, D., Shen, L. and Xie, H. (2006). A bionic neural network for fish-robot locomotion. Journal of Bionic Engineering, 3(4): 187–194.
64. Li, L., Wang, C. and Xie, G. (2014). Modeling of a carangiform-like robotic fish for both forward and backward swimming: based on the fixed point. IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May-7 June, 800–805.
65. Zhao, W., Yu, J., Fang, Y. and Wang, L. (2006). Development of multi-mode biomimetic robotic fish based on central pattern generator. IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 9-15 Oct., 3891–3896.
66. Hu, Y., Zhang, S., Liang, J. and Wang, T. (2014). Development and cpg-based control of a biomimetic robotic fish with advanced underwater mobility. IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May-7 June, 813–818.
67. Hu, Y., Liang, J., and Wang, T. (2015). Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising. Bioinspiration & biomimetics, 10(2): 026006.
68. Sfakiotakis, M., Gliva, R. and Mountoufaris, M. (2016). Steering-plane motion control for an underwater robot with a pair of undulatory fin propulsors. 24th Mediterranean Conference on Control and Automation, MED 2016, Athens, Greece, 21-24 June, 496–503.
69. Seo, K., Chung, S.J. and Slotine, J.J.E. (2010). CPG-based control of a turtle-like underwater vehicle. Autonomous Robots, 28(3): 247–269.
70. Chung, S-J. and Dorothy, M. (2010). Neurobiologically ınspired control of engineered flapping flight. Journal of Guidance, Control, and Dynamics, 33(2): 440–453.
71. Kwon, J., Yang, W., Lee, H., Bae, J.H. and Oh, Y. (2014). Biologically inspired control algorithm for an unified motion of whole robotic arm-hand system. IEEE International Workshop on Robot and Human Interactive Communication, Edinburgh, UK, 25-29 Aug., 398–404.
72. Kwon, J. and Kim, H. (2016). The enhanced performance of a robotic arm control based on neural oscillator networks. 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23-26 Oct., 803-808.
73. Chowdhury, A.R. and Panda, S.K. (2015). Finding answers to biological control methods using modulated patterns : an application to bio-inspired robotic fish. IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26-30 May., 3146–3153.
74. Liu, G.L., Habib, M.K., Watanabe, K. and Izumi, K. (2008). Central pattern generators based on matsuoka oscillators for the locomotion of biped robots. Artificial Life and Robotics, 12(1–2): 264–269.
75. Kim, D.H., Leei S. and Park, J. (2008). Design of central pattern generators (cpgs) for trajectory tracking of fish-mimetic robots. 7th WSEAS international conference on computational intelligence, man-machine systems and cybernetics, (WSEAS), 191–196.
76. Ijspeert, A.J., Crespi, A. and Cabelguen, J.M. (2005). Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics, 3(3): 171–196.
77. Yu, J., Chen, S., Wu, Z. and Wang, W. (2016). On a miniature free-swimming robotic fish with multiple sensors. International Journal of Advanced Robotic Systems, 13(2): 62.
78. Righetti, L. and Ijspeert, A.J. (2008). Pattern generators with sensory feedback for the control of quadruped locomotion. IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19-23 May, 819–824.
79. Wang, T., Hu, Y. and Liang, J. (2013). Learning to swim: a dynamical systems approach to mimicking fish swimming with cpg. Robotica, 31(3): 361–369.
80. Ahmadizadeh, S., Nesic, D., Grayden, D.B. and Freestone, D.R. (2015). Analytic synchronization conditions for a network of wilson and cowan oscillators. IEEE Conference on Decision and Control, Osaka, Japan, 15-18 Dec., 3104–3109.
81. Wright, J. and Jordanov, I. (2015). Intelligent approaches in locomotion - a review. Journal of Intelligent and Robotic Systems: Theory and Applications, 80(2): 255–277.
82. Fang, Y., Hu, J., Liu, W., Chen, B., Qi, J. and Ye, X. (2016). A cpg-based online trajectory planning method for industrial manipulators. Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2016, Tokyo, Japan, 20-22 July, 41–46.
83. Wang, C., Xie, G., Wang, L. and Cao, M. (2011). CPG-based locomotion control of a robotic fish: using linear oscillators and reducing control parameters via pso. International Journal of Innovative Computing, Information and Control, 7(7 B): 4237–4249.
84. Li, L., Wang, C., Xie, G. and Shi, H. (2014). Digital implementation of cpg controller in avr system. 33rd Chinese Control Conference, CCC 2014, Nanjing, China, 28-30 July, 8293–8298.
85. Wang, W., Guo, J., Wang, Z. and Xie, G. (2013). Neural controller for swimming modes and gait transition on an ostraciiform fish robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013, Wollongong, NSW, Australia, 9-12 July, 1564–1569.
86. Wang, W., Xie, G. and Shi, H. (2014). Dynamic modeling of an ostraciiform robotic fish based on angle of attack theory. International Joint Conference on Neural Networks, Beijing, China, 6-11 July, 3944–3949.
87. Wang, W., Gu, D. and Xie, G. (2017). Autonomous optimization of swimming gait in a fish robot with multiple onboard sensors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13.
88. Zhang, S., Qian, Y., Liao, P., Qin, F. and Yang, J. (2016). Design and control of an agile robotic fish with ıntegrative biomimetic mechanisms. IEEE/ASME Transactions on Mechatronics, 21(4): 1846–1857.
89. Zhu, M., Xu, W. and Cheng, L.K. (2017). Esophageal peristaltic control of a soft-bodied swallowing robot by the central pattern generator. IEEE/ASME Transactions on Mechatronics, 22(1): 91–98.
90. Hu, Y., Tian, W., Liang, J. and Wang, T. (2011). Learning fish-like swimming with a cpg-based locomotion controller. IEEE Int. Conf. on Intelligent Robots and Systems, San Francisco, CA, USA, 25-30 Sept., 1863–1868.
91. Niu, X. (2013). Modeling, control and locomotion planning of an anguilliform fish robot. PhD Thesis, Harbin Institute of Technology, China.
92. Zhou, C. and Low, K.H. (2014). On-line optimization of biomimetic undulatory swimming by an experiment-based approach. Journal of Bionic Engineering, 11(2): 213–225.
93. Wang, L., Wang, S., Cao, Z., Tan, M., Zhou, C., Sang, H. and Shen Z. (2005). Motion control of a robot fish based on cpg. Proceedings of the IEEE International Conference on Industrial Technology, Hong Kong, China, 14-17 Dec., 1263–1268.
94. Hu, Y., Zhao, W., Wang, L. and Jia, Y. (2008). Neural-based control of modular robotic fish with multiple propulsors. IEEE Conference on Decision and Control, Cancun, Mexico, 9-11 Dec., 5232–5237.
95. Yu, J., Wang, M., Su Z., Tan, M. and Zhang, J. (2011). Dynamic modeling and its application for a cpg-coupled robotic fish. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9-13 May, 159-164.
96. Wu, Z., Yu, J., Su, Z. and Tan, M. (2013). An improved multimodal robotic fish modelled after esox lucíus. IEEE International Conference on Robotics and Biomimetics, ROBIO 2013, Shenzhen, China, 12-14 December, 516–521.
97. Wu, Z., Yu, J., Su, Z. and Tan, M. (2014). Implementing 3-d high maneuvers with a novel biomimetic robotic fish, IFAC Proceedings Volumes (IFAC-PapersOnline), 47(3): 4861–4866.
98. Wang, M., Yu, J.Z., Tan, M. and Zhang, J.W. (2012). Multimodal swimming control of a robotic fish with pectoral fins using a cpg network. Chinese Science Bulletin, 57(10): 1209–1216.
99. Wu, Z., Yu, J. and Tan, M. (2012). CPG parameter search for a biomimetic robotic fish based on particle swarm optimization. IEEE International Conference on Robotics and Biomimetics, ROBIO 2012, Guangzhou, China, 11-14 Dec., 563–568.
100. Haitao, Y., Haibo, G., Liang D., Mantian Li, Z., and Liu G. (2016). Gait generation with smooth transition using cpg-based locomotion control for hexapod walking robot, IEEE Transactions on Industrial Electronics, 63(9): 5488–5500.
101. Gay, S., Santos-Victor, J. and Ijspeert, A.J. (2013). Learning robot gait stability using neural networks as sensory feedback function for central pattern generators. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3-7 Nov., 1–8.
102. Huang, Z. and Wang, W. (2016). Controller-switching based gait transition for a quadruped robot, IEEE International Conference on Mechatronics and Automation, ICMA 2016, Harbin, China, 7-10 Aug., 653–658.
103. Li, X., Wang, W. and Yi, J. (2016). Foot contact force of walk gait for a quadruped robot, IEEE International Conference on Mechatronics and Automation, ICMA 2016, Harbin, China, 7-10 Aug., 659–664.
104. Marbach, D. and Ijspeert, A.J. (2005). Online optimization of modular robot locomotion. IEEE International Conference Mechatronics and Automation, Niagara Falls, Ont., Canada, 29 July-1 Aug., 248–253.
105. Sproewitz, A., Moeckel, R., Maye, J. and Ijspeert, A.J. (2008). Learning to move in modular robots using central pattern generators and online optimization. International Journal of Robotics Research, 27(3–4): 423–443.
106. Wang, Z., Gao, Q. and Zhao, H. (2017). CPG-ınspired locomotion control for a snake robot basing on nonlinear oscillators. Journal of Intelligent and Robotic Systems: Theory and Applications, 85(2): 209–227.
107. Wang, Z., He, B., Shen, R. and Meng, W. (2015). Contact impact inhibition strategy for biped robot walking based on central pattern generator. IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, Zhuhai, China, 6-9 Dec.,733–738.
108. Hong, Y-D. and Lee, B. (2017). Evolutionary optimization approach for optimal hopping of humanoid robots. IEEE Transactıons on Industrıal Electronıcs, 64(2): 1279–1283.