Poly N-Aminorodaninin Elektrokimyasal Sentezi Ve Karakterizasyonu
Year 2019,
Volume: 31 Issue: 1, 231 - 240, 15.03.2019
Ece Altunbaş Şahin
,
Ali Döner
,
Gülfeza Kardaş
Abstract
Bu
çalışmada, Poly-N-aminorodanin (pNAR) platin elektrot yüzeyine dönüşümlü voltametri
tekniği kullanılarak sentezlenmiştir. pNAR’nin pembe renkli ve homojen yapıda
olduğu tespit edilmiştir. pNAR’ın kimyasal yapısı ve oluşum mekanizması
13C-NMR, FT-Infrared spektrumları ve enerji dağılımlı X-ışını spektroskopisi
(EDX) ile belirlenmiştir. pNAR’ın termal özellikleri termogravimetrik analiz
(TGA), diferansiyel termal analiz ve diferansiyel taramalı kalorimetri (DSC)
teknikleri kullanılarak araştırılmıştır. Polimer filmin termal dayanıklılığını
yüksek olduğu bulunmuştur. Polimer filmin yüzey morfolojisi taramalı elektron
mikroskopu (SEM), ve atomik kuvvet mikroskopu (AFM) ile belirlenmiştir. Polimer
KOH ve dimetil sülfoksit çözeltileri içerisinde çözünmektedir.
References
- [1] Shirakawa H. The discovery of polyacetylene film: The dawning of an era of conducting. Polymers Chem. Int. Ed. 2001; 40:2575-2580.
[2] Hsiao S, Liou G, Kung Y, Lee Y. Synthesis and characterization of electrochromic poly(amide–imide)s based on the diimide-diacid from 4,4′-diamino-4″-methoxytriphenylamine and trimellitic anhydride. Eur. Polym J. 2010; 46:1355–1366.
[3] Somboonsub B, Srisuwan S, Invernale MA, Praserthdam SP, Scola DA, Sotzing GA.Comparison of the thermally stable conducting polymers PEDOT, PANi, and PPy using sulfonated poly(imide) templates. Polymer 2010;51:4472-4476.
[4] David V, Vinas C, Teixidor F. Poly(3,4-ethylenedioxythiophene) doped with a non-extrudable metallacarborane anion electroactive during synthesis. Polymer 2006;47:4694–4702.
[5] Arslan A, Türkaslan Ö, Tanyel C, Akhmedov IM, Toppare L.Electrochromic properties of a soluble conducting polymer: Poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole. Mater. Chem. Phys. 2007;104:410-416.
[6] Alvarez-Romero GA, Garfias-Garcia E, Ramirez-Silva MT, Galan-Vidal C, Romero-Romo M, Palomar-Pardave M. Electrochemical and AFM characterization of the electropolimerization of pyrrole over a graphite–epoxy resin solid composite electrode, in the presence of different anions. Appl. Surf. Sci. 2006; 252:5783–5792.
[7] Jiang Y, Xu J, Yu J. Conducting polymeric nanoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance. Polymer 2007;48:4459–4465.
[8] Solmaz R. Electrochemical synthesis of poly-2-aminothiazole on mild steel and its corrosion inhibition performance. Prog. Org. Coat. 2011;70:122–126.
[9] Diaz AF. Electrochemical preparation and characterization of conducting polymers. Chem. Scr., 1981;17:145-148.
[10] Tourillon G, Garnier F. New Electrochemically generated organic conducting polymers. J. Electroanal. Chem.,1982;135:173-178.
[11] Pringlea JM, Efthimiadisb J, Howletta PC, MacFarlanea DR, Chaplinc AB, Hallc SB, Officerc L, Wallaced GG, Forsyth M.Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 2004;45:1447–1453.
[12] Tüken T, Özyılmaz AT, Yazıcı B, Erbil M. Electrochemical synthesis of polyaniline on mild steel in acetonitrile–LiClO4 and corrosion performance. Appl. Surf. Sci. 2004;236:292–305.
[13] Lakard B, Herlem G, Fahys B. Electrochemical polymerization of 1,2-ethanedithiol as a new way to synthesize polyethylenedisulfide. Polymer 2008;49:1743-1747.
[14] Inzelt G.Conducting Polymers: A New Erain Electrochemistry, Springer, Berlin, 1987 (Chapter4).
[15] Malinauskas A.Electrocatalysis at conducting polymers. Synth. Met 1999;107:75-83.
[16] Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA. Electron and proton conducting polymers: recent developments and prospects. Electrochim. Acta 2000;45:2403-2421.
[17] Solmaz R, Kardaş G. Electrochemical synthesis and characterization of poly-2-aminothiazole. Prog. Org. Coat. 2009;64:81–88.
[18] Kardaş G, Solmaz R.Electrochemical synthesis and characterization of a new conducting polymer: Polyrhodanine. Appl. Surf. Sci. 2007;253:3402–3407.
[19] Cutshall NS, Oday C, Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1 Bioorg. Med. Chem. Lett. 2005;15:3374-3379.
[20] Mishra S, Srivastava SK, Srivastava SD. Synthesis of 5-arylidene-2-aryl-3-(phenothiazino/benzotriazoloacetamidyl)-1,3-thiazolidine-4-ones as antiinflammatory, anticonvulsant, analgesic and antimicrobial agents. Indian J. Chem. Sect. B 1997;36:826-830.
[21] Foye WO, Tovivich P. N-Glucopyranosyl-5-aralkylidenerhodanines: Synthesis and antibacterial and antiviral activities. J. Pharm. Sci. 1977;66:1607-1611.
[22] Momose Y, Meguro K, Ikeda H, Hatanaka C, Oi S, Sohda T. Studies On Antidiabetic Agents .10. Synthesis And Biological-Activities Of Pioglitazone And Related-Compounds. Chem. Pharm. Bull. 1991; 39:1440-1445.
[23] Sudo K, Matsumoto Y, Matsushima M, Fujiwara M, Konno K, Shimotohno K, Shigeta S, Yokota T. Novel Hepatitis C Virus Protease Inhibitors: Thiazolidine Derivatives. Biochem. Biophys. Res. Commun. 1997;238:643-647.
[24] Habib NS, Rida SM, Badawey EAM, Fahmy HTY, Ghozlan HA. Synthesis and antimicrobial activity of rhodanine derivatives. Eur. J. Med. Chem. 1997;32:759-762.
[25] Chandrakant GB, Gaikwad NJ. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorgan. Med. Chem. 2004;12:2151-2161.
[26] Vittoria DM, Mazzoni O, Piscopo E, Caligmano A, Bolognese A.Synthesis and antihistaminic activity of some thiazolidin-4-ones. J.Med. Chem. 1992;35:2910-2912.
[27] Sing W, Lee T, Yeo SL, Lim S, Sim P. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorgan. Med. Chem. Lett. 2001;11:91-93.
[28] Cutshall NS, O’Day C.Prezhdo Rhodanine derivatives as inhibitors of JSP-1. M. Bioorgan Med. Chem. Lett. 2005;15:3374–3379.
[29] Altunbas E¸ Solmaz R, Kardas G. Corrosion behaviour of polyrhodanine coated copper electrode in 0.1 M H2SO4 solution. Mater. Chem. Phys. 2010;121:354–358.
[30] Jabeen S, Rex A, Palmer BS, Potter M, Trevor JD, Babur ZC. Low Temperature Crystal Structures of Two Rhodanine Derivatives, 3-Amino Rhodanine and 3-Methyl Rhodanine: Geometry of the Rhodanine Ring. J Chem Crystallogr 2009;39:151–156.
[31] Wessling B, Skotheim TA, Elsenbaumer RL, Reynolds JR. Editors, Handbook of conducting polymers, 2nd ed. New York: Marcel Dekker, 1998;p. 467.
[32] Menon R, Yoon CO, Moses D, Heeger AJ. In: Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers,2nd ed.. New York: Marcel Dekker,. 1998;p. 27.
[33] Yuehong P, He X, Xiaoyu L, Hongliu D, Yuxiao C, Guoyue S. Electrochemical synthesis, characterization, and electrochromic properties of poly(3-chlorothiophene) and its copolymer with 3-methylthiophene in a room temperature ionic liquid. Electrochem. Commun. 2006;8:1757–1763.
[34] Casas J, Castellano E, Macias A, Playa N, Sanchez A, Sordo J, Varela J, Lopez E. Methyl- and phenylmercury(II) complexes of 5-(4′-dimethylaminobenzylidene)rhodanine (HDABRd) and 5-(2′-thiophenomethylene)rhodanine (HTRd). The crystal and molecular structure of [HgPh(DABRd)] and [HgMe(TRd)]. Polyhedron 2001;20:1845-1850
Year 2019,
Volume: 31 Issue: 1, 231 - 240, 15.03.2019
Ece Altunbaş Şahin
,
Ali Döner
,
Gülfeza Kardaş
References
- [1] Shirakawa H. The discovery of polyacetylene film: The dawning of an era of conducting. Polymers Chem. Int. Ed. 2001; 40:2575-2580.
[2] Hsiao S, Liou G, Kung Y, Lee Y. Synthesis and characterization of electrochromic poly(amide–imide)s based on the diimide-diacid from 4,4′-diamino-4″-methoxytriphenylamine and trimellitic anhydride. Eur. Polym J. 2010; 46:1355–1366.
[3] Somboonsub B, Srisuwan S, Invernale MA, Praserthdam SP, Scola DA, Sotzing GA.Comparison of the thermally stable conducting polymers PEDOT, PANi, and PPy using sulfonated poly(imide) templates. Polymer 2010;51:4472-4476.
[4] David V, Vinas C, Teixidor F. Poly(3,4-ethylenedioxythiophene) doped with a non-extrudable metallacarborane anion electroactive during synthesis. Polymer 2006;47:4694–4702.
[5] Arslan A, Türkaslan Ö, Tanyel C, Akhmedov IM, Toppare L.Electrochromic properties of a soluble conducting polymer: Poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole. Mater. Chem. Phys. 2007;104:410-416.
[6] Alvarez-Romero GA, Garfias-Garcia E, Ramirez-Silva MT, Galan-Vidal C, Romero-Romo M, Palomar-Pardave M. Electrochemical and AFM characterization of the electropolimerization of pyrrole over a graphite–epoxy resin solid composite electrode, in the presence of different anions. Appl. Surf. Sci. 2006; 252:5783–5792.
[7] Jiang Y, Xu J, Yu J. Conducting polymeric nanoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance. Polymer 2007;48:4459–4465.
[8] Solmaz R. Electrochemical synthesis of poly-2-aminothiazole on mild steel and its corrosion inhibition performance. Prog. Org. Coat. 2011;70:122–126.
[9] Diaz AF. Electrochemical preparation and characterization of conducting polymers. Chem. Scr., 1981;17:145-148.
[10] Tourillon G, Garnier F. New Electrochemically generated organic conducting polymers. J. Electroanal. Chem.,1982;135:173-178.
[11] Pringlea JM, Efthimiadisb J, Howletta PC, MacFarlanea DR, Chaplinc AB, Hallc SB, Officerc L, Wallaced GG, Forsyth M.Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 2004;45:1447–1453.
[12] Tüken T, Özyılmaz AT, Yazıcı B, Erbil M. Electrochemical synthesis of polyaniline on mild steel in acetonitrile–LiClO4 and corrosion performance. Appl. Surf. Sci. 2004;236:292–305.
[13] Lakard B, Herlem G, Fahys B. Electrochemical polymerization of 1,2-ethanedithiol as a new way to synthesize polyethylenedisulfide. Polymer 2008;49:1743-1747.
[14] Inzelt G.Conducting Polymers: A New Erain Electrochemistry, Springer, Berlin, 1987 (Chapter4).
[15] Malinauskas A.Electrocatalysis at conducting polymers. Synth. Met 1999;107:75-83.
[16] Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA. Electron and proton conducting polymers: recent developments and prospects. Electrochim. Acta 2000;45:2403-2421.
[17] Solmaz R, Kardaş G. Electrochemical synthesis and characterization of poly-2-aminothiazole. Prog. Org. Coat. 2009;64:81–88.
[18] Kardaş G, Solmaz R.Electrochemical synthesis and characterization of a new conducting polymer: Polyrhodanine. Appl. Surf. Sci. 2007;253:3402–3407.
[19] Cutshall NS, Oday C, Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1 Bioorg. Med. Chem. Lett. 2005;15:3374-3379.
[20] Mishra S, Srivastava SK, Srivastava SD. Synthesis of 5-arylidene-2-aryl-3-(phenothiazino/benzotriazoloacetamidyl)-1,3-thiazolidine-4-ones as antiinflammatory, anticonvulsant, analgesic and antimicrobial agents. Indian J. Chem. Sect. B 1997;36:826-830.
[21] Foye WO, Tovivich P. N-Glucopyranosyl-5-aralkylidenerhodanines: Synthesis and antibacterial and antiviral activities. J. Pharm. Sci. 1977;66:1607-1611.
[22] Momose Y, Meguro K, Ikeda H, Hatanaka C, Oi S, Sohda T. Studies On Antidiabetic Agents .10. Synthesis And Biological-Activities Of Pioglitazone And Related-Compounds. Chem. Pharm. Bull. 1991; 39:1440-1445.
[23] Sudo K, Matsumoto Y, Matsushima M, Fujiwara M, Konno K, Shimotohno K, Shigeta S, Yokota T. Novel Hepatitis C Virus Protease Inhibitors: Thiazolidine Derivatives. Biochem. Biophys. Res. Commun. 1997;238:643-647.
[24] Habib NS, Rida SM, Badawey EAM, Fahmy HTY, Ghozlan HA. Synthesis and antimicrobial activity of rhodanine derivatives. Eur. J. Med. Chem. 1997;32:759-762.
[25] Chandrakant GB, Gaikwad NJ. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorgan. Med. Chem. 2004;12:2151-2161.
[26] Vittoria DM, Mazzoni O, Piscopo E, Caligmano A, Bolognese A.Synthesis and antihistaminic activity of some thiazolidin-4-ones. J.Med. Chem. 1992;35:2910-2912.
[27] Sing W, Lee T, Yeo SL, Lim S, Sim P. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorgan. Med. Chem. Lett. 2001;11:91-93.
[28] Cutshall NS, O’Day C.Prezhdo Rhodanine derivatives as inhibitors of JSP-1. M. Bioorgan Med. Chem. Lett. 2005;15:3374–3379.
[29] Altunbas E¸ Solmaz R, Kardas G. Corrosion behaviour of polyrhodanine coated copper electrode in 0.1 M H2SO4 solution. Mater. Chem. Phys. 2010;121:354–358.
[30] Jabeen S, Rex A, Palmer BS, Potter M, Trevor JD, Babur ZC. Low Temperature Crystal Structures of Two Rhodanine Derivatives, 3-Amino Rhodanine and 3-Methyl Rhodanine: Geometry of the Rhodanine Ring. J Chem Crystallogr 2009;39:151–156.
[31] Wessling B, Skotheim TA, Elsenbaumer RL, Reynolds JR. Editors, Handbook of conducting polymers, 2nd ed. New York: Marcel Dekker, 1998;p. 467.
[32] Menon R, Yoon CO, Moses D, Heeger AJ. In: Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers,2nd ed.. New York: Marcel Dekker,. 1998;p. 27.
[33] Yuehong P, He X, Xiaoyu L, Hongliu D, Yuxiao C, Guoyue S. Electrochemical synthesis, characterization, and electrochromic properties of poly(3-chlorothiophene) and its copolymer with 3-methylthiophene in a room temperature ionic liquid. Electrochem. Commun. 2006;8:1757–1763.
[34] Casas J, Castellano E, Macias A, Playa N, Sanchez A, Sordo J, Varela J, Lopez E. Methyl- and phenylmercury(II) complexes of 5-(4′-dimethylaminobenzylidene)rhodanine (HDABRd) and 5-(2′-thiophenomethylene)rhodanine (HTRd). The crystal and molecular structure of [HgPh(DABRd)] and [HgMe(TRd)]. Polyhedron 2001;20:1845-1850