HDPE/ZnO ve HDPE/Hidroksiapatit Nanokompozitlerin Termal ve Morfolojik Özelliklerinin İncelenmesi
Yıl 2020,
Cilt: 32 Sayı: 1, 259 - 266, 03.03.2020
Betul Çiçek Ozkan
,
Melek Güner
,
Tarık Selçuk Şeker
Öz
Yüksek yoğunluklu polietilen (HDPE) matrisine farklı oranlarda çinko oksit (ZnO) ve hidroksiapatit (HAp) nano parçacıklar takviye edilerek baskı tekniği ile farklı konsantrasyonlarda nanokompozit malzemeler üretilmiştir. Kullanılan nano takviye malzemelerinin ve kompozit üretim yönteminin HDPE matrisli kompozitler üzerindeki termal, morfolojik ve kristalinite özellikleri araştırılmıştır. Hazırlanan kompozitlerin X-ışını kırınım deseni (XRD) yöntemi kullanılarak kristalinite özellikleri incelenmiş ve HDPE’nin karakteristik 2θ pikleri elde edilmiştir. HDPE/ZnO nanokompoziti için ZnO fazına ait olan 2θ pikleri tespit edilmiş ve ortalama kristal boyutunun 14 ile 26 nm arasında değiştiği belirlenmiştir. HDPE/HAp nano kompozitinde HAp fazına ait olan 2θ pikleri ve ortalama 10 ile 25 nm arasında değişen kristal boyutları tespit edilmiştir. XRD sonuçları her iki kompozit içerisinde nano takviye malzemelerinin iyi bir biçimde dağıldığını göstermektedir. Ayrıca artan takviye miktarı ile kompozitin kristalinitesinin arttığı belirlenmiştir. Termal analiz sonucunda her iki kompozit grubu için tespit edilen takviye oranının gerçek değerlerle örtüştüğü ve artan takviye miktarıyla ısı akısının arttığı belirlenmiştir. Morfolojik incelemeler sonucunda nanokompozit malzemelerin yüzey yapısının saf HDPE’den farklı olduğu, tabakalanmaların meydana geldiği ve artan takviye miktarıyla bu değişimin daha net bir biçimde görüldüğü gözlenmiştir.
Kaynakça
- [1] Tanniru, M., Yuan, Q., and Misra, R., 2006. On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites, Polymer, 47(6), 2133-2146.
- [2] Grigoriadou, I., Paraskevopoulos, K., Chrissafis, K., Pavlidou, E., Stamkopoulos, T.-G., and Bikiaris, D., 2011. Effect of different nanoparticles on HDPE UV stability, Polymer degradation and stability, 96(1), 151-163.
- [3] Gilmer, T.C. and Williams, M., 1996. Polymer mechanical properties via a new laboratory tensile tester, Journal of chemical education, 73(11), 1062.
- [4] Sahebian, S., Zebarjad, S.M., Sajjadi, S.A., Sherafat, Z., and Lazzeri, A., 2007. Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites, Journal of Applied Polymer Science, 104(6), 3688-3694.
- [5] Ammala, A., Hill, A., Meakin, P., Pas, S.J., and Turney, T.W., 2002. Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers, Journal of Nanoparticle Research, 4(1-2), 167-174.
- [6] Langat, J., Bellayer, S., Hudrlik, P., Hudrlik, A., Maupin, P., Gilman Sr, J., and Raghavan, D., 2006. Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites, Polymer, 47(19), 6698-6709.
- [7] Ahmed, M., Meyer, W.E., and Nel, J.M., 2019. Structural, optical and electrical properties of the fabricated Schottky diodes based on ZnO, Ce and Sm doped ZnO films prepared via wet chemical technique, Materials Research Bulletin, 115, 12-18.
- [8] Çolak, H. and Karaköse, E., 2018. Tm-doped ZnO nanorods as a TCO for PV applications, Journal of Rare Earths, 36(10), 1067-1073.
- [9] Zak, A.K., Ghanbari, A., and ShekoftehNarm, T., 2017. The effect of molybdenum on optical properties of ZnO nanoparticles in Ultraviolet–Visible region, Advanced Powder Technology, 28(11), 2980-2986.
- [10] Bhati, V.S., Hojamberdiev, M., and Kumar, M., 2019. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review, Energy Reports.
- [11] Mallakpour, S. and Behranvand, V., 2016. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications, European Polymer Journal, 84, 377-403.
- [12] Mansour, S.A., Elsad, R., and Izzularab, M., 2016. Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route, Journal of Sol-Gel Science and Technology, 80(2), 333-341.
- [13] Tian, F., Lei, Q., Wang, X., and Wang, Y., 2012. Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics, IEEE Transactions on Dielectrics and Electrical Insulation, 19(3), 763-769.
- [14] Jafarzadeh, Y., Yegani, R., and Sedaghat, M., 2015. Preparation, characterization and fouling analysis of ZnO/polyethylene hybrid membranes for collagen separation, Chemical engineering research and design, 94, 417-427.
- [15] Li, S.C. and Li, Y.N., 2010. Mechanical and antibacterial properties of modified nano‐ZnO/high‐density polyethylene composite films with a low doped content of nano‐ZnO, Journal of Applied Polymer Science, 116(5), 2965-2969.
- [16] Ersoy, S. and Taşdemir, M., 2012. Zinc oxide (ZnO), magnesium hydroxide [Mg (OH) 2] and calcium carbonate (CaCO3) filled HDPE polymer composites: Mechanical, thermal and morphological properties, Marmara Fen Bilimleri Dergisi, 24(4), 93-104.
- [17] Dorozhkin, S.V., 2010. Calcium orthophosphates as bioceramics: state of the art, Journal of functional biomaterials, 1(1), 22-107.
- [18] Dou, Y., Cai, S., Ye, X., Xu, G., Hu, H., and Ye, X., 2012. Preparation of mesoporous hydroxyapatite films used as biomaterials via sol–gel technology, Journal of Sol-Gel Science and Technology, 61(1), 126-132.
- [19] Dorozhkin, S.V., 2010. Bioceramics of calcium orthophosphates, Biomaterials, 31(7), 1465-1485.
- [20] Li, K. and Tjong, S.C., 2011. Preparation and mechanical and tribological properties of high-density polyethylene/hydroxyapatite nanocomposites, Journal of Macromolecular Science, Part B, 50(7), 1325-1337.
- [21] Parra, C., Gonzalez, G., and Albano, C., Synthesis and characterization of composite materials HDPE/HA and PMMA/HA prepared by sonochemistry. in Macromolecular symposia. 2009. Wiley Online Library.
- [22] Fouad, H., Elleithy, R., and Alothman, O.Y., 2013. Thermo-mechanical, wear and fracture behavior of high-density polyethylene/hydroxyapatite nano composite for biomedical applications: effect of accelerated ageing, Journal of Materials Science & Technology, 29(6), 573-581.
- [23] Borchert, H., Shevchenko, E.V., Robert, A., Mekis, I., Kornowski, A., Grübel, G., and Weller, H., 2005. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles, Langmuir, 21(5), 1931-1936.
- [24] Alaburdaite, R., Paluckiene, E., and Grevys, S., 2016. Comparison of the surface characteristics of polyethylene and polypropylene films and polyester textile coated with electroconductive copper sulphide thin films, Chalcogenide Letters, 13(12), 529-536.
- [25] He, Q., Yuan, T., Zhu, J., Luo, Z., Haldolaarachchige, N., Sun, L., Khasanov, A., Li, Y., Young, D.P., and Wei, S., 2012. Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@ FeO core-shell nanoparticles, Polymer, 53(16), 3642-3652.
- [26] Shen, L., Bian, X., Lu, X., Shi, L., Liu, Z., Chen, L., Hou, Z., and Fan, K., 2012. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes, Desalination, 293, 21-29.
- [27] Paz, A., Guadarrama, D., López, M., E González, J., Brizuela, N., and Aragón, J., 2012. A comparative study of hydroxyapatite nanoparticles synthesized by different routes, Química Nova, 35(9), 1724-1727.
- [28] Kaygili, O., Ates, T., Keser, S., Al-Ghamdi, A.A., and Yakuphanoglu, F., 2014. Controlling of dielectrical properties of hydroxyapatite by ethylenediamine tetraacetic acid (EDTA) for bone healing applications, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 268-273.