Research Article
BibTex RIS Cite

Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi

Year 2020, Volume: 32 Issue: 2, 313 - 324, 24.09.2020
https://doi.org/10.35234/fumbd.645570

Abstract

Aşırı plastik deformasyon (APD), nano yapılı ve ultra ince taneli malzemeler elde edilmesi amacı ile kullanılan bir yöntemdir. Tüp şeklindeki malzemelerin aşırı plastik deformasyonunda kullanılan birçok yöntem vardır. Bu yöntemlerden biri de paralel tüp kanal açısal presleme (PTCAP) yöntemidir. Bu çalışmada, boru şeklindeki parçaların deformasyonu çift geçişli paralel tüp kanal açısal presleme (DP-PTCAP) metodu kullanılarak araştırılmıştır. Analizlerde, 5 farklı kanal açısı, 4 farklı kesit genişleme oranı ve 4 farklı boyutsuz uzunluk kullanılmıştır. Bu parametrelerin elde edilen tüp (boru) şeklindeki parçaların gerilme, birim şekil değişimi ve şekillendirme kuvvetine etkileri sonlu elemanlar yöntemi ile analiz edilmiştir. Çalışmada AA6061 malzeme kullanılmıştır. Analizler sonucunda, kanal açısının artması ile efektif birim şekil değişimi, şekillendirme kuvveti ve malzemede oluşan gerilmenin azaldığı görülmüştür. Çift geçişli kalıplarla elde edilen malzemelerin birim şekil değişiminin tek geçişli kalıplara nazaran daha yüksek olduğu belirlenmiştir. Yapılan çalışma sonucu analizlerden elde edilen birim şekil değişimine bakarak çift geçişli kalıplar ile elde edilen malzemelerin tane yapısının tek geçişli kalıplara nazaran daha ince taneli olduğu söylenebilir.

References

  • [1] Nazari F, Honarpisheh M (2018) Analytical model to estimate force of constrained groove pressing process. J Manuf Process 32:11–19. https://doi.org/10.1016/j.jmapro.2018.01.015
  • [2] Głuchowski W, Stobrawa J, Rdzawski Z, Malec W (2011) Ultrafine grained copper alloys processed by continuous repetitive corrugation and straightening method. Mater Sci Forum 674:177–188. https://doi.org/10.4028/www.scientific.net/MSF.674.177
  • [3] Solhjoei N, Varposhty AR, Mokhtarian H, Manian A (2014) A Comparative Study To Evaluate the Efficiency of Rcs and Cgp Processes. Indian JSciRes 1:563–572
  • [4] Shahmirzaloo A, Faraji G, Safari M, Mohammadinejad S (2018) Interface sheet-constrained groove pressing as a modified severe plastic deformation process. Mater Sci Technol (United Kingdom) 34:1669–1678. https://doi.org/10.1080/02670836.2018.1471379
  • [5] Yadav PC, Sinhal A, Sahu S, et al (2016) Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet. J Mater Eng Perform 25:2604–2614. https://doi.org/10.1007/s11665-016-2142-0
  • [6] Valiev RZ, Estrin Y, Horita Z, et al (2016) Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom 68:1216–1226. https://doi.org/10.1007/s11837-016-1820-6
  • [7] Afifi MA, Wang YC, Pereira PHR, et al (2018) Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments. J Alloys Compd 769:631–639. https://doi.org/10.1016/j.jallcom.2018.07.343
  • [8] Raj KH, Sharma RS, Singh P, Dayal A (2011) Study of friction stir processing (FSP) and High Pressure Torsion (HPT) and their effect on mechanical properties. Procedia Eng 10:2904–2910. https://doi.org/10.1016/j.proeng.2011.04.482
  • [9] Saito Y, Tsuji N, Utsunomiya H, et al (1998) Ultra-Fine Grained Bulk Aluminum Produced By Accumulative Roll-Bonding ( Arb ) Process. Acta Metall 39:1221–1227
  • [10] Faraji G, Mosavi Mashadi M, Abrinia K, Kim HS (2012) Deformation behavior in the tubular channel angular pressing (TCAP) as a noble SPD method for cylindrical tubes. Appl Phys A Mater Sci Process 107:819–827. https://doi.org/10.1007/s00339-012-6809-6
  • [11] Toth LS, Chen C, Pougis A, et al (2019) High pressure tube twisting for producing ultra fine grained materials: A review. Mater Trans 60:1177–1191. https://doi.org/10.2320/matertrans.MF201910
  • [12] Faraji G, Babaei A, Mosavi Mashadi M, Abrinia K (2012) Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett 77:82–85. https://doi.org/10.1016/j.matlet.2012.03.007
  • [13] Wang JT, Li Z, Weng J, Langdon TG (2012) Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater 67:810–813. https://doi.org/10.1016/j.scriptamat.2012.07.028
  • [14] Jafarzadeh H, Abrinia K (2015) Fabrication of ultra-fine grained aluminium tubes by RTES technique. Mater Charact 102:1–8. https://doi.org/10.1016/j.matchar.2014.12.025
  • [15] Babaei A, Mosavi Mashadi M (2014) Tubular pure copper grain refining by tube cyclic extrusion-compression (TCEC) as a severe plastic deformation technique. Prog Nat Sci Mater Int 24:623–630. https://doi.org/10.1016/j.pnsc.2014.10.009
  • [16] Babaei A, Mosavi Mashadi M, Jafarzadeh H (2014) Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. J Mater Sci 49:3158–3165. https://doi.org/10.1007/s10853-014-8017-6
  • [17] Mohebbi MS, Akbarzadeh A (2010) Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater Sci Eng A 528:180–188. https://doi.org/10.1016/j.msea.2010.08.081
  • [18] Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016) Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): Role of shear reversal. Mater Sci Eng A 666:324–338. https://doi.org/10.1016/j.msea.2016.04.080
  • [19] Faraji G, Mosavi Mashadi M, Bushroa AR, et al (2013) TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater Sci Eng A 563:193–198. https://doi.org/10.1016/j.msea.2012.11.065
  • [20] Javidikia M, Hashemi R (2017) Analysis and Simulation of Parallel Tubular Channel Angular Pressing of Al 5083 Tube. Trans Indian Inst Met 70:2547–2553. https://doi.org/10.1007/s12666-017-1117-7
  • [21] Afrasiab M, Faraji G, Tavakkoli V, et al (2015) The Effects of the Multi-pass Parallel Tubular Channel Angular Pressing on the Microstructure and Mechanical Properties of the Cu–Zn Tubes. Trans Indian Inst Met 68:873–879. https://doi.org/10.1007/s12666-015-0524-x
  • [22] Jafarlou DM, Zalnezhad E, Hassan MA, et al (2016) Severe plastic deformation of tubular AA 6061 via equal channel angular pressing. Mater Des 90:1124–1135. https://doi.org/10.1016/j.matdes.2015.11.026
  • [23] Nagasekhar A V., Tick-Hon Y, Seow HP (2007) Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing. J Mater Process Technol 192–193:449–452. https://doi.org/10.1016/j.jmatprotec.2007.04.093
  • [24] Lu SK, Liu HY, Yu L, et al (2011) 3D FEM simulations for the homogeneity of plastic deformation in aluminum alloy HS6061-T6 during ECAP. Procedia Eng 12:35–40. https://doi.org/10.1016/j.proeng.2011.05.007
Year 2020, Volume: 32 Issue: 2, 313 - 324, 24.09.2020
https://doi.org/10.35234/fumbd.645570

Abstract

References

  • [1] Nazari F, Honarpisheh M (2018) Analytical model to estimate force of constrained groove pressing process. J Manuf Process 32:11–19. https://doi.org/10.1016/j.jmapro.2018.01.015
  • [2] Głuchowski W, Stobrawa J, Rdzawski Z, Malec W (2011) Ultrafine grained copper alloys processed by continuous repetitive corrugation and straightening method. Mater Sci Forum 674:177–188. https://doi.org/10.4028/www.scientific.net/MSF.674.177
  • [3] Solhjoei N, Varposhty AR, Mokhtarian H, Manian A (2014) A Comparative Study To Evaluate the Efficiency of Rcs and Cgp Processes. Indian JSciRes 1:563–572
  • [4] Shahmirzaloo A, Faraji G, Safari M, Mohammadinejad S (2018) Interface sheet-constrained groove pressing as a modified severe plastic deformation process. Mater Sci Technol (United Kingdom) 34:1669–1678. https://doi.org/10.1080/02670836.2018.1471379
  • [5] Yadav PC, Sinhal A, Sahu S, et al (2016) Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet. J Mater Eng Perform 25:2604–2614. https://doi.org/10.1007/s11665-016-2142-0
  • [6] Valiev RZ, Estrin Y, Horita Z, et al (2016) Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom 68:1216–1226. https://doi.org/10.1007/s11837-016-1820-6
  • [7] Afifi MA, Wang YC, Pereira PHR, et al (2018) Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments. J Alloys Compd 769:631–639. https://doi.org/10.1016/j.jallcom.2018.07.343
  • [8] Raj KH, Sharma RS, Singh P, Dayal A (2011) Study of friction stir processing (FSP) and High Pressure Torsion (HPT) and their effect on mechanical properties. Procedia Eng 10:2904–2910. https://doi.org/10.1016/j.proeng.2011.04.482
  • [9] Saito Y, Tsuji N, Utsunomiya H, et al (1998) Ultra-Fine Grained Bulk Aluminum Produced By Accumulative Roll-Bonding ( Arb ) Process. Acta Metall 39:1221–1227
  • [10] Faraji G, Mosavi Mashadi M, Abrinia K, Kim HS (2012) Deformation behavior in the tubular channel angular pressing (TCAP) as a noble SPD method for cylindrical tubes. Appl Phys A Mater Sci Process 107:819–827. https://doi.org/10.1007/s00339-012-6809-6
  • [11] Toth LS, Chen C, Pougis A, et al (2019) High pressure tube twisting for producing ultra fine grained materials: A review. Mater Trans 60:1177–1191. https://doi.org/10.2320/matertrans.MF201910
  • [12] Faraji G, Babaei A, Mosavi Mashadi M, Abrinia K (2012) Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett 77:82–85. https://doi.org/10.1016/j.matlet.2012.03.007
  • [13] Wang JT, Li Z, Weng J, Langdon TG (2012) Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater 67:810–813. https://doi.org/10.1016/j.scriptamat.2012.07.028
  • [14] Jafarzadeh H, Abrinia K (2015) Fabrication of ultra-fine grained aluminium tubes by RTES technique. Mater Charact 102:1–8. https://doi.org/10.1016/j.matchar.2014.12.025
  • [15] Babaei A, Mosavi Mashadi M (2014) Tubular pure copper grain refining by tube cyclic extrusion-compression (TCEC) as a severe plastic deformation technique. Prog Nat Sci Mater Int 24:623–630. https://doi.org/10.1016/j.pnsc.2014.10.009
  • [16] Babaei A, Mosavi Mashadi M, Jafarzadeh H (2014) Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. J Mater Sci 49:3158–3165. https://doi.org/10.1007/s10853-014-8017-6
  • [17] Mohebbi MS, Akbarzadeh A (2010) Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater Sci Eng A 528:180–188. https://doi.org/10.1016/j.msea.2010.08.081
  • [18] Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016) Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): Role of shear reversal. Mater Sci Eng A 666:324–338. https://doi.org/10.1016/j.msea.2016.04.080
  • [19] Faraji G, Mosavi Mashadi M, Bushroa AR, et al (2013) TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater Sci Eng A 563:193–198. https://doi.org/10.1016/j.msea.2012.11.065
  • [20] Javidikia M, Hashemi R (2017) Analysis and Simulation of Parallel Tubular Channel Angular Pressing of Al 5083 Tube. Trans Indian Inst Met 70:2547–2553. https://doi.org/10.1007/s12666-017-1117-7
  • [21] Afrasiab M, Faraji G, Tavakkoli V, et al (2015) The Effects of the Multi-pass Parallel Tubular Channel Angular Pressing on the Microstructure and Mechanical Properties of the Cu–Zn Tubes. Trans Indian Inst Met 68:873–879. https://doi.org/10.1007/s12666-015-0524-x
  • [22] Jafarlou DM, Zalnezhad E, Hassan MA, et al (2016) Severe plastic deformation of tubular AA 6061 via equal channel angular pressing. Mater Des 90:1124–1135. https://doi.org/10.1016/j.matdes.2015.11.026
  • [23] Nagasekhar A V., Tick-Hon Y, Seow HP (2007) Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing. J Mater Process Technol 192–193:449–452. https://doi.org/10.1016/j.jmatprotec.2007.04.093
  • [24] Lu SK, Liu HY, Yu L, et al (2011) 3D FEM simulations for the homogeneity of plastic deformation in aluminum alloy HS6061-T6 during ECAP. Procedia Eng 12:35–40. https://doi.org/10.1016/j.proeng.2011.05.007
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Vedat Taşdemir 0000-0002-2375-9525

Publication Date September 24, 2020
Submission Date November 11, 2019
Published in Issue Year 2020 Volume: 32 Issue: 2

Cite

APA Taşdemir, V. (2020). Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 313-324. https://doi.org/10.35234/fumbd.645570
AMA Taşdemir V. Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2020;32(2):313-324. doi:10.35234/fumbd.645570
Chicago Taşdemir, Vedat. “Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi Ile Aşırı Plastik Deformasyon Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 2 (September 2020): 313-24. https://doi.org/10.35234/fumbd.645570.
EndNote Taşdemir V (September 1, 2020) Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32 2 313–324.
IEEE V. Taşdemir, “Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, pp. 313–324, 2020, doi: 10.35234/fumbd.645570.
ISNAD Taşdemir, Vedat. “Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi Ile Aşırı Plastik Deformasyon Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (September 2020), 313-324. https://doi.org/10.35234/fumbd.645570.
JAMA Taşdemir V. Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2020;32:313–324.
MLA Taşdemir, Vedat. “Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi Ile Aşırı Plastik Deformasyon Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2020, pp. 313-24, doi:10.35234/fumbd.645570.
Vancouver Taşdemir V. Boruların Çift Geçişli Paralel Tüp Kanal Açısal Presleme (DP- PTCAP) Yöntemi ile Aşırı Plastik Deformasyon Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2020;32(2):313-24.