Research Article
BibTex RIS Cite

Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi

Year 2021, Volume: 33 Issue: 2, 635 - 644, 15.09.2021
https://doi.org/10.35234/fumbd.904201

Abstract

Rüzgâr enerjisi, elektrik üretiminde kullanımı giderek artan bir enerji kaynağıdır. Rüzgâr enerjisinde verimlilik, uygun elemanların ve kontrol tekniğinin seçimine bağlıdır. Son yıllarda rüzgâr enerjisi sistemlerinde değişken hızlı rüzgâr türbinleriyle uyumlu kalıcı mıknatıslı senkron generatörler ön plana çıkmaktadır. Bu tip generatörler elektriksel kayıpları azaltabileceği gibi mekanik bileşenlere bağımlılığı azaltarak genel sistem performansını yükseltir. Dönüşüm sistemlerinde anlık rüzgâra göre sistem verimliliğini en üst seviyede tutabilmek için maksimum güç noktası izleme kontrolünden yararlanılır. Bu çalışmada; dönüşüm sistemi bileşenlerinin sistem büyüklükleri üzerinden çalışma prensipleri açıklanmış. Kanat uç hız oranı, tepe tırmanma ve bulanık mantık tabanlı maksimum güç noktası izleme kontrol yöntemleri açıklanmıştır. Bu kontrol yöntemleri, Matlab/Simulink ortamında modellenerek çeşitli sistem büyüklükleri üzerinden karşılaştırmalı analizleri gerçekleştirilmiştir.

References

  • Rolan, A., Luna, A., Vazquez, G., Aguilar, D., Azevedo, G. Modeling of a variable speed wind turbine with a permanent magnet synchronous generator. In 2009 IEEE international symposium on industrial electronics; 05 08 June 2009; South Korea, pp. 734-739.
  • Yin, M., Li, G., Zhou, M., & Zhao, C. Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In 2007 IEEE Power Engineering Society General Meeting; June 2007, pp. 1-6.
  • Ackermann T. Wind Power in Power Systems, United Kingdom, John Wiley & Sons, Ltd, 2005.
  • Sharma, H. K., Samaria, A., & Gidwani, L. Designing and performance analysis of controller for PMSG based wind energy conversion system. In 2017 International Conference on Information, Communication, Instrumentation, and Control (ICICIC); 17-19 August 2017; Indore, India, pp. 1-6.
  • Abbaker, O. Control of wind turbine for variable speed based on fuzzy-PID controller. Journal of Engineering and Computer Science (JECS) 2017; 18(1): 40-51.
  • Vijayalakshmi, G., & Arutchelvi, M. Design and development of controller for PMSG based Wind Energy Conversion system. In 2014 International Conference on Circuits, Power and Computing Technologies;2014; pp. 573-578.
  • Kumari, S., Kushwaha, V., & Gupta, T. N. A Maximum Power Point Tracking For a PMSG Based Variable Speed Wind Energy Conversion System. In 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC); 2018; pp. 789-794.
  • Zammit, D., Staines, C. S., Micallef, A., Apap, M. Optimal power control for a PMSG small wind turbine in a grid-connected DC microgrid. In 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT); 2018; pp. 32-37.
  • Sahin, P., Resmi, R., Vanitha, V. PMSG based standalone wind electric conversion system with MPPT. In 2016 International Conference on Emerging Technological Trends (ICETT);2016; pp. 1-5.
  • Prajapati, K. R. Application of fuzzy logic for MPPT control in stand-alone wind energy conversion system with a battery storage system. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS); 2019; pp. 1-6.
  • Tiwari, R., & Babu, N. R. Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine, 2019; 49(1): 462-467.
  • Ngo, Q. V., Yi, C., Nguyen, T. The maximum power point tracking based-control system for small-scale wind turbine using fuzzy logic. International Journal of Electrical and Computer Engineering (IJECE) 2020; pp. 3927-3935.
  • Gajewski, P., Pieńkowski, K. Advanced Control of Direct-Driven Pmsg Generator in Wind Turbine System. Archives of Electrical Engineering, 2016; 65(4): 643-656.
  • Wu, B., Lang, Y., Zargari, N., & Kouro, S. Power conversion and control of wind energy systems, New York, NY, USA John Wiley & Sons, 2011.
  • Bianchi, F. D., De Battista, H., Mantz, R. J. Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media, 2006.
  • Soetedjo, A., Lomi, A., & Mulayanto, W. P. Modeling of wind energy system with MPPT control. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics; July 2011; pp. 1-6.
  • Koutroulis, E., & Kalaitzakis, K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE transactions on industrial electronics,2006, 53(2): 486-494.
  • Abdullah, M. A., Yatim, A. H. M., Tan, C. W., & Saidur, R. A review of maximum power point tracking algorithms for wind energy systems. Renewable and sustainable energy reviews, 2012; 16(5): 3220-3227.
  • Jha, D. A comprehensive review on wind energy systems for electric power generation: current situation and improved technologies to realize future development. International Journal of Renewable Energy Research (IJRER) 2017; 7(4): 1786-1805.
  • Govinda, C. V., Udhay, S. V., Rani, C., Wang, Y., & Busawon, K. A review on various MPPT techniques for wind energy conversion system. In 2018 International conference on computation of power, energy, Information and Communication (ICCPEIC); 2018; pp. 310-326.
  • Yüksek, G., & Mete, A. N. A hybrid variable step size MPPT method based on P&O and INC methods. In 2017 10th International Conference on Electrical and Electronics Engineering (ELECO); 2017. pp. 949-953.
  • Thongam, J. S., & Ouhrouche, M. MPPT control methods in wind energy conversion systems. Fundamental and advanced topics in wind power, 2011, (1): 339-360.
Year 2021, Volume: 33 Issue: 2, 635 - 644, 15.09.2021
https://doi.org/10.35234/fumbd.904201

Abstract

References

  • Rolan, A., Luna, A., Vazquez, G., Aguilar, D., Azevedo, G. Modeling of a variable speed wind turbine with a permanent magnet synchronous generator. In 2009 IEEE international symposium on industrial electronics; 05 08 June 2009; South Korea, pp. 734-739.
  • Yin, M., Li, G., Zhou, M., & Zhao, C. Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In 2007 IEEE Power Engineering Society General Meeting; June 2007, pp. 1-6.
  • Ackermann T. Wind Power in Power Systems, United Kingdom, John Wiley & Sons, Ltd, 2005.
  • Sharma, H. K., Samaria, A., & Gidwani, L. Designing and performance analysis of controller for PMSG based wind energy conversion system. In 2017 International Conference on Information, Communication, Instrumentation, and Control (ICICIC); 17-19 August 2017; Indore, India, pp. 1-6.
  • Abbaker, O. Control of wind turbine for variable speed based on fuzzy-PID controller. Journal of Engineering and Computer Science (JECS) 2017; 18(1): 40-51.
  • Vijayalakshmi, G., & Arutchelvi, M. Design and development of controller for PMSG based Wind Energy Conversion system. In 2014 International Conference on Circuits, Power and Computing Technologies;2014; pp. 573-578.
  • Kumari, S., Kushwaha, V., & Gupta, T. N. A Maximum Power Point Tracking For a PMSG Based Variable Speed Wind Energy Conversion System. In 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC); 2018; pp. 789-794.
  • Zammit, D., Staines, C. S., Micallef, A., Apap, M. Optimal power control for a PMSG small wind turbine in a grid-connected DC microgrid. In 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT); 2018; pp. 32-37.
  • Sahin, P., Resmi, R., Vanitha, V. PMSG based standalone wind electric conversion system with MPPT. In 2016 International Conference on Emerging Technological Trends (ICETT);2016; pp. 1-5.
  • Prajapati, K. R. Application of fuzzy logic for MPPT control in stand-alone wind energy conversion system with a battery storage system. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS); 2019; pp. 1-6.
  • Tiwari, R., & Babu, N. R. Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine, 2019; 49(1): 462-467.
  • Ngo, Q. V., Yi, C., Nguyen, T. The maximum power point tracking based-control system for small-scale wind turbine using fuzzy logic. International Journal of Electrical and Computer Engineering (IJECE) 2020; pp. 3927-3935.
  • Gajewski, P., Pieńkowski, K. Advanced Control of Direct-Driven Pmsg Generator in Wind Turbine System. Archives of Electrical Engineering, 2016; 65(4): 643-656.
  • Wu, B., Lang, Y., Zargari, N., & Kouro, S. Power conversion and control of wind energy systems, New York, NY, USA John Wiley & Sons, 2011.
  • Bianchi, F. D., De Battista, H., Mantz, R. J. Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media, 2006.
  • Soetedjo, A., Lomi, A., & Mulayanto, W. P. Modeling of wind energy system with MPPT control. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics; July 2011; pp. 1-6.
  • Koutroulis, E., & Kalaitzakis, K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE transactions on industrial electronics,2006, 53(2): 486-494.
  • Abdullah, M. A., Yatim, A. H. M., Tan, C. W., & Saidur, R. A review of maximum power point tracking algorithms for wind energy systems. Renewable and sustainable energy reviews, 2012; 16(5): 3220-3227.
  • Jha, D. A comprehensive review on wind energy systems for electric power generation: current situation and improved technologies to realize future development. International Journal of Renewable Energy Research (IJRER) 2017; 7(4): 1786-1805.
  • Govinda, C. V., Udhay, S. V., Rani, C., Wang, Y., & Busawon, K. A review on various MPPT techniques for wind energy conversion system. In 2018 International conference on computation of power, energy, Information and Communication (ICCPEIC); 2018; pp. 310-326.
  • Yüksek, G., & Mete, A. N. A hybrid variable step size MPPT method based on P&O and INC methods. In 2017 10th International Conference on Electrical and Electronics Engineering (ELECO); 2017. pp. 949-953.
  • Thongam, J. S., & Ouhrouche, M. MPPT control methods in wind energy conversion systems. Fundamental and advanced topics in wind power, 2011, (1): 339-360.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Hasan Bektaş Perçin 0000-0001-8968-969X

Abuzer Çalışkan 0000-0001-8262-7912

Publication Date September 15, 2021
Submission Date March 27, 2021
Published in Issue Year 2021 Volume: 33 Issue: 2

Cite

APA Perçin, H. B., & Çalışkan, A. (2021). Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 635-644. https://doi.org/10.35234/fumbd.904201
AMA Perçin HB, Çalışkan A. Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2021;33(2):635-644. doi:10.35234/fumbd.904201
Chicago Perçin, Hasan Bektaş, and Abuzer Çalışkan. “Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, no. 2 (September 2021): 635-44. https://doi.org/10.35234/fumbd.904201.
EndNote Perçin HB, Çalışkan A (September 1, 2021) Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33 2 635–644.
IEEE H. B. Perçin and A. Çalışkan, “Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, pp. 635–644, 2021, doi: 10.35234/fumbd.904201.
ISNAD Perçin, Hasan Bektaş - Çalışkan, Abuzer. “Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/2 (September 2021), 635-644. https://doi.org/10.35234/fumbd.904201.
JAMA Perçin HB, Çalışkan A. Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:635–644.
MLA Perçin, Hasan Bektaş and Abuzer Çalışkan. “Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, 2021, pp. 635-44, doi:10.35234/fumbd.904201.
Vancouver Perçin HB, Çalışkan A. Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Noktası İzleme Kontrolünün Farklı Yöntemler Üzerinden Karşılaştırmalı Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33(2):635-44.