Research Article
BibTex RIS Cite

Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması

Year 2021, Volume: 33 Issue: 2, 645 - 654, 15.09.2021
https://doi.org/10.35234/fumbd.913078

Abstract

Alg biyokütlesi yüksek organik içeriğinden dolayı mikrobiyal yakıt hücreleri (MYH) için eşsiz substrat kaynaklarından biridir. Fakat alg hücre duvarının kompleks yapısı biyolojik parçalanabilirliğini önemli ölçüde kısıtlamaktadır. Bu çalışmada farklı konsantrasyonlarda (5-30 ml/L aralığında) hidrojen peroksit (H2O2) kullanılarak alg biyokütlesine ön işlem uygulanmış ve MYH sisteminde elektrik üretim performansı araştırılmıştır. MYH’de maksimum güç yoğunluğu (244.64 mW/m2) 25 ml/L H2O2 konsantrasyonunda ön işlem uygulanmış alg biyokütlesi ile elde edilmiştir. Elde edilen maksimum güç miktarı kontrol reaktörüne (41.16 mW/m2) kıyasla yaklaşık olarak altı kat daha yüksektir. Moleküler analizler, ön işlem uygulanmış alg biyokütlesinin kullanıldığı MYH reaktöründe (MYH-A) b-proteobacteria grubuna ait bakteriyel türlerin oranının kontrol reaktörüne (MYH-K) kıyasla %10 arttığını göstermiştir. Ayrıca döngüsel voltametri (CV) sonuçları, MYH-A reaktörlerindeki anot biyofilminin MYH-K reaktörünün anot biofilmine kıyasla daha yüksek bir elektroaktiviteye sahip olduğunu göstermiştir. Çalışma sonuçları, H2O2’nin alg biyokütlesinin biyolojik olarak parçalanmasını desteklemek ve MYH’nin elektrik üretim performansını iyileştirmek için etkili bir ön işlem yöntemi olduğunu göstermiştir.

Thanks

Not: Bu çalışma Muhammed Fatih HASAR tarafından Fırat Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalında yapılan “Farklı Ön İşlem Teknikleri Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması” başlıklı yüksek lisans tezinin bir kısmını kapsamaktadır.

References

  • [1] Love BJ, Einheuser MD, Nejadhashemi AP. Effects on aquatic and human health due to large scale bioenergy crop expansion. Sci Total Environ 2011; 409: 3215-3229.
  • [2] Feng Y, Harper Jr WF. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations. J Environ Manage 2013; 130: 369-374.
  • [3] Sinyak Y. Global climate and energy systems. Sci Total Environ 1994; 143: 31-51.
  • [4] Zhou M, Chi M, Wang H, Jin T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochem Eng J 2012; 60: 151-155.
  • [5] Wen Q, Kong F, Zheng H, Cao D, Ren Y, Yin J. Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem Eng J 2011; 168: 572-576.
  • [6] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Bıotechnol 2005; 23: 291-298.
  • [7] Reyes KRE, Tsai P-W, Tayo LL, Hsueh C-C, Chen B-Y. Biodegradation of anthraquinone dyes: Interactive assessment upon biodecolorization, biosorption and biotoxicity using dual-chamber microbial fuel cells (MFCs). Process Biochem 2021; 101: 111-127.
  • [8] Huang S-J, Ubando AT, Wang C-Y, Su Y-X, Culaba AB, Lin Y-A, Wang C-T. Modification of carbon based cathode electrode in a batch-type microbial fuel cells. Biomass Bioenergy 2021; 145: 105972.
  • [9] Taşkan B. Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass Bioenergy 2020; 142: 105781.
  • [10] Gupta S, Nayak A, Roy C, Yadav AK. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production. Chemosphere 2021; 263: 128132.
  • [11] Blanken W, Postma PR, de Winter L, Wijffels RH, Janssen M. Predicting microalgae growth. Algal Res. 2016; 14: 28-38.
  • [12] Barahoei M, Hatamipour MS, Afsharzadeh S. CO2 capturing by chlorella vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. J. CO2 Util. 2020; 37: 9-19.
  • [13] Martínez C, Mairet F, Plaza L, Sciandra A, Bernard O. Quantifying the potential of microalgae to remove nutrients from wastewater. IFAC-PapersOnLine 2019; 52: 287-292.
  • [14] de Carvalho JC, Magalhães Jr AI, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour. Technol. 2020; 300: 122719.
  • [15] Kumar MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR. Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 2019; 253: 833-839.
  • [16] Chavoshani A, Amin MM, Asgari G, Seidmohammadi A, Hashemi M. In Advanced Oxidation Processes for Waste Water Treatment. Elsevier, 2018. pp. 215-255.
  • [17] Teong SP, Li X, Zhang Y. Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green Chem. 2019; 21: 5753-5780.
  • [18] Eswari P, Kavitha S, Kaliappan S, Yeom I-T, Banu JR. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions. Environ. Sci. Pollut. Res. 2016; 23: 13467-13479.
  • [19] Ho MC, Ong VZ, Wu TY. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review. Renewable Sustainable Energy Rev 2019; 112: 75-86.
  • [20] Liu J, Yu D, Zhang J, Yang M, Wang Y, Wei Y, Tong J. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res. 2016; 98: 98-108.
  • [21] Rashid N, Cui Y-F, Saif Ur Rehman M, Han J-I. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 2013; 456-457: 91-94.
  • [22] Rashid N, Cui Y-F, Rehman MSU, Han J-I. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Scı Total Environ 2013; 456: 91-94.
  • [23] Ashok V, Shriwastav A, Bose P. Nutrient removal using algal-bacterial mixed culture. Appl. Biochem. Biotechnol. 2014; 174: 2827-2838.
  • [24] Muñoz R, Jacinto M, Guieysse B, Mattiasson B. Combined carbon and nitrogen removal from acetonitrile using algal–bacterial bioreactors. Appl. Microbiol. Biotechnol. 2005; 67: 699-707.
  • [25] Taşkan E, Bulak S, Taşkan B, Şaşmaz M, El Abed S, El Abed A. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 2019; 128: 118-125.
  • [26] Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993; 59: 695-700.
  • [27] Muyzer G. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyze the genetic diversity of mixed microbial communities. Molecular microbial ecology manual: Springer, 1996.
  • [28] Taskan E, Hasar H. Comprehensive comparison of a new tin-coated copper mesh and a graphite plate electrode as an anode material in microbial fuel cell. Appl. Biochem. Biotechnol. 2015; 175: 2300-2308.
  • [29] Ameta SC, Ameta R. (2018) Advanced oxidation processes for wastewater treatment: emerging green chemical technology. ed. Academic press. Rajasthan, India: Elsevier, 2018.
  • [30] Monlau F, Barakat A, Trably E, Dumas C, Steyer J-P, Carrère H. Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Env Sci Tec 2013; 43: 260-322.
  • [31] Sivagurunathan P, Kumar G, Sen B, Lin CY. Development of a novel hybrid immobilization material (HY‐IM) for fermentative biohydrogen production from beverage wastewater. J. Chin. Chem. Soc. 2014; 61: 827-830.
  • [32] Song T-s, Hou S, Zhang J, Wang H, Xie J. Production of Electricity from Rice Straw with different Pretreatment Methods Using a Sediment Microbial Fuel Cell. Int. J. Electrochem. Sci.2018; 13: 461-471.
  • [33] Geng Y-K, Yuan L, Liu T, Li Z-H, Zheng X, Sheng G-P. In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. J. Power Sources 2021; 491: 229616.
  • [34] Shen J, Wang C, Liu Y, Hu C, Xin Y, Ding N, Su S. Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell. Biochem Eng J 2018; 129: 44-49.
  • [35] Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 2007; 98: 2568-2577.
  • [36] Li Y, Sun Y, Kong X, Li L, Yang G, Yuan Z. Isolation and electricity-producing characteristics of strain Dysgonomonas mossii. Trans. CSAE 2011; 27: 181-184.
  • [37] Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour. Technol. 2009; 100: 5132-5139.
  • [38] Li T, Fang Z, Yu R, Cao X, Song H, Li X. The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community. Environ. Technol. 2016; 37: 1683-1692.
  • [39] Zhao H, Kong C-H. Enhanced removal of p-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community. Chem Eng J 2018; 339: 424-431.
  • [40] Kim G, Webster G, Wimpenny J, Kim BH, Kim H, Weightman AJ. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 2006; 101: 698-710.
  • [41] Kumar SS, Malyan SK, Basu S, Bishnoi NR. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environ. Sci. Pollut. Res. 2017; 24: 16019-16030.
  • [42] Wu X, Xiong X, Owens G, Brunetti G, Zhou J, Yong X, Xie X, Zhang L, Wei P, Jia H. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Bioresour. Technol. 2018; 270: 11-19.
Year 2021, Volume: 33 Issue: 2, 645 - 654, 15.09.2021
https://doi.org/10.35234/fumbd.913078

Abstract

References

  • [1] Love BJ, Einheuser MD, Nejadhashemi AP. Effects on aquatic and human health due to large scale bioenergy crop expansion. Sci Total Environ 2011; 409: 3215-3229.
  • [2] Feng Y, Harper Jr WF. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations. J Environ Manage 2013; 130: 369-374.
  • [3] Sinyak Y. Global climate and energy systems. Sci Total Environ 1994; 143: 31-51.
  • [4] Zhou M, Chi M, Wang H, Jin T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochem Eng J 2012; 60: 151-155.
  • [5] Wen Q, Kong F, Zheng H, Cao D, Ren Y, Yin J. Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem Eng J 2011; 168: 572-576.
  • [6] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Bıotechnol 2005; 23: 291-298.
  • [7] Reyes KRE, Tsai P-W, Tayo LL, Hsueh C-C, Chen B-Y. Biodegradation of anthraquinone dyes: Interactive assessment upon biodecolorization, biosorption and biotoxicity using dual-chamber microbial fuel cells (MFCs). Process Biochem 2021; 101: 111-127.
  • [8] Huang S-J, Ubando AT, Wang C-Y, Su Y-X, Culaba AB, Lin Y-A, Wang C-T. Modification of carbon based cathode electrode in a batch-type microbial fuel cells. Biomass Bioenergy 2021; 145: 105972.
  • [9] Taşkan B. Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass Bioenergy 2020; 142: 105781.
  • [10] Gupta S, Nayak A, Roy C, Yadav AK. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production. Chemosphere 2021; 263: 128132.
  • [11] Blanken W, Postma PR, de Winter L, Wijffels RH, Janssen M. Predicting microalgae growth. Algal Res. 2016; 14: 28-38.
  • [12] Barahoei M, Hatamipour MS, Afsharzadeh S. CO2 capturing by chlorella vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. J. CO2 Util. 2020; 37: 9-19.
  • [13] Martínez C, Mairet F, Plaza L, Sciandra A, Bernard O. Quantifying the potential of microalgae to remove nutrients from wastewater. IFAC-PapersOnLine 2019; 52: 287-292.
  • [14] de Carvalho JC, Magalhães Jr AI, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour. Technol. 2020; 300: 122719.
  • [15] Kumar MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR. Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 2019; 253: 833-839.
  • [16] Chavoshani A, Amin MM, Asgari G, Seidmohammadi A, Hashemi M. In Advanced Oxidation Processes for Waste Water Treatment. Elsevier, 2018. pp. 215-255.
  • [17] Teong SP, Li X, Zhang Y. Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green Chem. 2019; 21: 5753-5780.
  • [18] Eswari P, Kavitha S, Kaliappan S, Yeom I-T, Banu JR. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions. Environ. Sci. Pollut. Res. 2016; 23: 13467-13479.
  • [19] Ho MC, Ong VZ, Wu TY. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review. Renewable Sustainable Energy Rev 2019; 112: 75-86.
  • [20] Liu J, Yu D, Zhang J, Yang M, Wang Y, Wei Y, Tong J. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res. 2016; 98: 98-108.
  • [21] Rashid N, Cui Y-F, Saif Ur Rehman M, Han J-I. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 2013; 456-457: 91-94.
  • [22] Rashid N, Cui Y-F, Rehman MSU, Han J-I. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Scı Total Environ 2013; 456: 91-94.
  • [23] Ashok V, Shriwastav A, Bose P. Nutrient removal using algal-bacterial mixed culture. Appl. Biochem. Biotechnol. 2014; 174: 2827-2838.
  • [24] Muñoz R, Jacinto M, Guieysse B, Mattiasson B. Combined carbon and nitrogen removal from acetonitrile using algal–bacterial bioreactors. Appl. Microbiol. Biotechnol. 2005; 67: 699-707.
  • [25] Taşkan E, Bulak S, Taşkan B, Şaşmaz M, El Abed S, El Abed A. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 2019; 128: 118-125.
  • [26] Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993; 59: 695-700.
  • [27] Muyzer G. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyze the genetic diversity of mixed microbial communities. Molecular microbial ecology manual: Springer, 1996.
  • [28] Taskan E, Hasar H. Comprehensive comparison of a new tin-coated copper mesh and a graphite plate electrode as an anode material in microbial fuel cell. Appl. Biochem. Biotechnol. 2015; 175: 2300-2308.
  • [29] Ameta SC, Ameta R. (2018) Advanced oxidation processes for wastewater treatment: emerging green chemical technology. ed. Academic press. Rajasthan, India: Elsevier, 2018.
  • [30] Monlau F, Barakat A, Trably E, Dumas C, Steyer J-P, Carrère H. Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Env Sci Tec 2013; 43: 260-322.
  • [31] Sivagurunathan P, Kumar G, Sen B, Lin CY. Development of a novel hybrid immobilization material (HY‐IM) for fermentative biohydrogen production from beverage wastewater. J. Chin. Chem. Soc. 2014; 61: 827-830.
  • [32] Song T-s, Hou S, Zhang J, Wang H, Xie J. Production of Electricity from Rice Straw with different Pretreatment Methods Using a Sediment Microbial Fuel Cell. Int. J. Electrochem. Sci.2018; 13: 461-471.
  • [33] Geng Y-K, Yuan L, Liu T, Li Z-H, Zheng X, Sheng G-P. In-situ alkaline pretreatment of waste activated sludge in microbial fuel cell enhanced power production. J. Power Sources 2021; 491: 229616.
  • [34] Shen J, Wang C, Liu Y, Hu C, Xin Y, Ding N, Su S. Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell. Biochem Eng J 2018; 129: 44-49.
  • [35] Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 2007; 98: 2568-2577.
  • [36] Li Y, Sun Y, Kong X, Li L, Yang G, Yuan Z. Isolation and electricity-producing characteristics of strain Dysgonomonas mossii. Trans. CSAE 2011; 27: 181-184.
  • [37] Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour. Technol. 2009; 100: 5132-5139.
  • [38] Li T, Fang Z, Yu R, Cao X, Song H, Li X. The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community. Environ. Technol. 2016; 37: 1683-1692.
  • [39] Zhao H, Kong C-H. Enhanced removal of p-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community. Chem Eng J 2018; 339: 424-431.
  • [40] Kim G, Webster G, Wimpenny J, Kim BH, Kim H, Weightman AJ. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 2006; 101: 698-710.
  • [41] Kumar SS, Malyan SK, Basu S, Bishnoi NR. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environ. Sci. Pollut. Res. 2017; 24: 16019-16030.
  • [42] Wu X, Xiong X, Owens G, Brunetti G, Zhou J, Yong X, Xie X, Zhang L, Wei P, Jia H. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Bioresour. Technol. 2018; 270: 11-19.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Muhammed Fatih Hasar 0000-0002-9496-3697

Ergin Taşkan 0000-0002-9620-8644

Publication Date September 15, 2021
Submission Date April 11, 2021
Published in Issue Year 2021 Volume: 33 Issue: 2

Cite

APA Hasar, M. F., & Taşkan, E. (2021). Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 645-654. https://doi.org/10.35234/fumbd.913078
AMA Hasar MF, Taşkan E. Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2021;33(2):645-654. doi:10.35234/fumbd.913078
Chicago Hasar, Muhammed Fatih, and Ergin Taşkan. “Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, no. 2 (September 2021): 645-54. https://doi.org/10.35234/fumbd.913078.
EndNote Hasar MF, Taşkan E (September 1, 2021) Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33 2 645–654.
IEEE M. F. Hasar and E. Taşkan, “Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, pp. 645–654, 2021, doi: 10.35234/fumbd.913078.
ISNAD Hasar, Muhammed Fatih - Taşkan, Ergin. “Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/2 (September 2021), 645-654. https://doi.org/10.35234/fumbd.913078.
JAMA Hasar MF, Taşkan E. Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:645–654.
MLA Hasar, Muhammed Fatih and Ergin Taşkan. “Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, 2021, pp. 645-54, doi:10.35234/fumbd.913078.
Vancouver Hasar MF, Taşkan E. Ön İşlem Uygulanmış Alg Biyokütlesinin Mikrobiyal Yakıt Hücresinde Elektrik Üretim Performansının Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33(2):645-54.