Research Article
BibTex RIS Cite

Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması

Year 2023, Volume: 35 Issue: 1, 175 - 193, 28.03.2023
https://doi.org/10.35234/fumbd.1183692

Abstract

Bu çalışmada, ortalama 3 km irtifaya 4 kg yükü taşıyabilen katı yakıtlı bir model roketin farklı kanat modellemelerine göre uçuş analizleri sayısal olarak araştırılmıştır. Bu yük ve irtifaya göre roketin ve kanatların CAD modeli OpenRocket programında oluşturulmuştur. Programda mevcut uygulamalarda kullanılan delta, yamuk, kırpılmış delta, ok delta ve kırpılmış ok delta kanat modellerinin roketin hızında, stabilitesinde, ivmesinde, ağırlığında ve irtifasındaki değişimlere etkileri grafikler halinde sunulmuştur. Elde edilen sonuçlara göre, en iyi uçuş verileri ok delta kanat modelinde bulunmuştur. Daha sonra, bu kanat modeli referans alınarak yeni tip bir kanat modeli geliştirilmiş, bu kanat modeli çentikli delta kanat olarak isimlendirilmiş ve bu kanadın uçuş verileri analiz edilmiştir. Yeni kanat geometrisinin ok delta kanat geometrisine göre yaklaşık olarak roketin irtifasında %0.382, hızında %0.366, ivmesinde %5 artış meydana getirirken roket stabilitesinde %2.66, ağırlığında %0.287, basınç merkezinde %0.507 ve ağırlık merkezinde ise %0.568’lik bir azalma sağladığı görülmüştür. Bu sonuçlara göre, çentikli delta kanat modelinin roketin performansında olumlu etkiler sağladığı görülmüştür.

References

  • Barbosa, A. N., Guimarães, L. N. F., Multidisciplinary design optimization of sounding rocket fins shape using a tool called mdo-sonda, Journal of Aerospace Technology and Management, 4, 431-442, 2012.
  • Priyadarshi, P., Alam, M., Saroha, K., Multi-disciplinary multi-objective design optimization of sounding rocket fins, International Journal of Advances in Engineering Sciences and Applied Mathematics, 6(3), 166-182, 2014.
  • Vidanović, N., Rašuo, B., Kastratović, G., Grbović, A., Puharić, M., & Maksimović, K. Multidisciplinary shape optimization of missile fin configuration subject to aerodynamic heating. Journal of Spacecraft and Rockets, 57(3), 510-527, 2020.
  • Khalil, M., Abdalla, H., & Kamal, O. Trajectory prediction for a typical fin stabilized artillery rocket. In International Conference on Aerospace Sciences and Aviation Technology (Vol. 13, No. Aerospace Scıences & Avıatıon Technology, ASAT-13, May 26–28, , pp. 1-14, 2009.
  • Azevedo, F. S., Knowing the stability of model rockets: A study of learning in interest-based practices, Cognition and Instruction, 31(3), 345-374. 2013.
  • Shah, S., Tanwani, N., Singh, S. K. Drag analysis for sounding rocket nose cone, Int. Res. J. Eng. Technol.(IRJET), 7(07), 2020.
  • S. Niskanen, Development of an Open Source model rocket simulation software, MSc. Dissertation, Helsinki University of Technology, Faculty of Information and Natural Sciences, 2009.
  • Campbell, T. A., Seufert, S. T., Reis, R. C., Brewer, J. C., Limberger Tomiozzo, R., Whelan, C. E., Okutsu, M. Model rocket projects for aerospace engineering course: Simulation of flight trajectories. In 54th AIAA Aerospace Sciences Meeting (p. 1577). 2016.
  • Brewer, J. C., Reis, R. C., Limberger Tomiozzo, R., Okutsu, M., Model Rocket Projects for Aerospace Engineering Course: Propellant Analyses. In 54th AIAA Aerospace Sciences Meeting (p. 1578), 2016.
  • Tola, C., Nikbay, M., Investigation of the effect of thickness, taper ratio and aspect ratio on fin flutter velocity of a model rocket using response surface method. In 2015 7th International Conference on Recent Advances in Space Technologies (RAST) (pp. 27-32). IEEE, 2015.
  • Pektaş, A., Demircan, Z., Hacıabdullahoğlu, Ü., Ejder, N., Tola, C. , Effects of Different Fin Shapes on Apogee and Stability of Model Rockets. In 2019 9th International Conference on Recent Advances in Space Technologies (RAST) (pp. 193-199). IEEE, 2019.
  • Rohini, D., Sasikumar, C., Samiyappan, P., Dakshinamurthy, B., Koppula, N. ,Design & analysis of solid rocket using open rocket software. Materials Today: Proceedings, 2022.
  • Baloda, Y., Jaiswal, A., He, X., Datye, A., Theoretical and Experimental Performance Evaluation of Shark-Caved, Sounder, and Trapezoidal Fins. 2020 NCUR Proceedings. 2020.
  • Bošković, D. M., & Krstić, M.. Stabilization of a solid propellant rocket instability by state feedback. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 13(5), 483-495, 2003.
  • Gregorek, G. M. Aerodynamic drag of model rockets. Estes Industries, Penrose, CO, 2-51,1970.
  • Bar-Haim, B., Seginer, A., Aerodynamics of wraparound fins. Journal of Spacecraft and Rockets, 20(4), 339-345. 1983.
  • LaBudde, E. V. A design procedure for maximizing altitude performance. Research and Development Project. NARAM, 1999.
  • Madden, R. B., A Statistical Analvsis of the Roll Rate of a Launch Vehicle under the Influence of Random Fin Misalignments. AIAA Journal, 10(3), 324-325, 1972.
  • Richardson, E. H., Blackwood, J. M., Hays, M. J., Skinner, T., Solid rocket launch vehicle explosion environments. In JANNAF Conference (No. M15-4253). 2014.
  • Gomez, F. J., & Miikkulainen, R.. Active guidance for a finless rocket using neuroevolution. In Genetic and Evolutionary Computation Conference (pp. 2084-2095). Springer, Berlin, Heidelberg.2003.
  • Wertz, J. R., ed. and Larson, W. J., ed., Launch Systems, Space Mission Analysis and Design, 3rd ed., Microcosm Press, Hawthorne, CA, and Springer, New York, NY, pp. 719-744, 1999.
  • Benson, T., ed., “Rocket Stability,” NASA Glen Research Center [online], https://spaceflightsystems.grc.nasa.gov/education/rocket/rktstab.html. Yayın tarihi June 2014. Erişim tarihi Eylül 2, 2022.
  • Fraley, E. R., Design, Manufacturing, and Integration of Fins for 2017-2018 OSU ESRA 30k Rocket, 2018.
  • Hernandez, R. N., Singh, H., Messimer, S. L., Patterson, A. E., Design and performance of modular 3-D printed solid-propellant rocket airframes. Aerospace, 4(2), 17, 2017.
  • Rocketsschools. Rocket Stability.http://www.rockets4schools.org/images/Basic.Rocket.Stability.pdf.Erişim tarihi Eylül 1,2022
  • Nasa. Determining center of pressure-cp. On 14 Jan 03 Erişim tarihi Eylül 5, 2022. https://www.grc.nasa.gov/WWW/k12/VirtualAero/BottleRocket/airplane/rktcp.html
  • Roketsan. Model roketçilik.https://www.roketsan.com.tr/uploads/docs/1628594512_20.03.2020model-roketcilik-master-dokumanv04.pdf.Yayın tarihi 20.03.2020.Erişim tarihi Eylül 3, 2022.
  • Datye, A. Effects of Shark Caved Fins on Altitude Performance of a High-Powered Rocket. 2019 NCUR, 2019.
  • Bar-Haim, B., Seginer, A. Aerodynamics of wraparound fins. Journal of Spacecraft and Rockets, 20(4), 339-345. 1983.
  • Yarce, A., Rodríguez, J. S., Galvez, J., Gómez, A., García, M. J., Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model. In Journal of Physics: Conference Series (Vol. 850, No. 1, p. 012019). IOP Publishing, 2017.
  • Neutrium. Mach Number, Neutrium, https://neutrium.net/fluid_flow/mach-number/ Yayın tarihi October 2014. Erişim tarihi Eylül 1, 2022.
  • Negahban, S., Design of a Model Rocket Flight Logging System and In-Air Deployable Rover, 2019.
  • Nakka, R., Fins for Rocket Stability, Experimental Rocketry, https://www.nakkarocketry.net/fins.html.Erişim tarihi Eylül 1,2022.
  • Zhang, G. Q., Ji, L. C., Xu, Y., Schlüter, J., Parametric study of different fins for a rocket at supersonic flow. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(18), 3392-3404, 2015.
Year 2023, Volume: 35 Issue: 1, 175 - 193, 28.03.2023
https://doi.org/10.35234/fumbd.1183692

Abstract

References

  • Barbosa, A. N., Guimarães, L. N. F., Multidisciplinary design optimization of sounding rocket fins shape using a tool called mdo-sonda, Journal of Aerospace Technology and Management, 4, 431-442, 2012.
  • Priyadarshi, P., Alam, M., Saroha, K., Multi-disciplinary multi-objective design optimization of sounding rocket fins, International Journal of Advances in Engineering Sciences and Applied Mathematics, 6(3), 166-182, 2014.
  • Vidanović, N., Rašuo, B., Kastratović, G., Grbović, A., Puharić, M., & Maksimović, K. Multidisciplinary shape optimization of missile fin configuration subject to aerodynamic heating. Journal of Spacecraft and Rockets, 57(3), 510-527, 2020.
  • Khalil, M., Abdalla, H., & Kamal, O. Trajectory prediction for a typical fin stabilized artillery rocket. In International Conference on Aerospace Sciences and Aviation Technology (Vol. 13, No. Aerospace Scıences & Avıatıon Technology, ASAT-13, May 26–28, , pp. 1-14, 2009.
  • Azevedo, F. S., Knowing the stability of model rockets: A study of learning in interest-based practices, Cognition and Instruction, 31(3), 345-374. 2013.
  • Shah, S., Tanwani, N., Singh, S. K. Drag analysis for sounding rocket nose cone, Int. Res. J. Eng. Technol.(IRJET), 7(07), 2020.
  • S. Niskanen, Development of an Open Source model rocket simulation software, MSc. Dissertation, Helsinki University of Technology, Faculty of Information and Natural Sciences, 2009.
  • Campbell, T. A., Seufert, S. T., Reis, R. C., Brewer, J. C., Limberger Tomiozzo, R., Whelan, C. E., Okutsu, M. Model rocket projects for aerospace engineering course: Simulation of flight trajectories. In 54th AIAA Aerospace Sciences Meeting (p. 1577). 2016.
  • Brewer, J. C., Reis, R. C., Limberger Tomiozzo, R., Okutsu, M., Model Rocket Projects for Aerospace Engineering Course: Propellant Analyses. In 54th AIAA Aerospace Sciences Meeting (p. 1578), 2016.
  • Tola, C., Nikbay, M., Investigation of the effect of thickness, taper ratio and aspect ratio on fin flutter velocity of a model rocket using response surface method. In 2015 7th International Conference on Recent Advances in Space Technologies (RAST) (pp. 27-32). IEEE, 2015.
  • Pektaş, A., Demircan, Z., Hacıabdullahoğlu, Ü., Ejder, N., Tola, C. , Effects of Different Fin Shapes on Apogee and Stability of Model Rockets. In 2019 9th International Conference on Recent Advances in Space Technologies (RAST) (pp. 193-199). IEEE, 2019.
  • Rohini, D., Sasikumar, C., Samiyappan, P., Dakshinamurthy, B., Koppula, N. ,Design & analysis of solid rocket using open rocket software. Materials Today: Proceedings, 2022.
  • Baloda, Y., Jaiswal, A., He, X., Datye, A., Theoretical and Experimental Performance Evaluation of Shark-Caved, Sounder, and Trapezoidal Fins. 2020 NCUR Proceedings. 2020.
  • Bošković, D. M., & Krstić, M.. Stabilization of a solid propellant rocket instability by state feedback. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 13(5), 483-495, 2003.
  • Gregorek, G. M. Aerodynamic drag of model rockets. Estes Industries, Penrose, CO, 2-51,1970.
  • Bar-Haim, B., Seginer, A., Aerodynamics of wraparound fins. Journal of Spacecraft and Rockets, 20(4), 339-345. 1983.
  • LaBudde, E. V. A design procedure for maximizing altitude performance. Research and Development Project. NARAM, 1999.
  • Madden, R. B., A Statistical Analvsis of the Roll Rate of a Launch Vehicle under the Influence of Random Fin Misalignments. AIAA Journal, 10(3), 324-325, 1972.
  • Richardson, E. H., Blackwood, J. M., Hays, M. J., Skinner, T., Solid rocket launch vehicle explosion environments. In JANNAF Conference (No. M15-4253). 2014.
  • Gomez, F. J., & Miikkulainen, R.. Active guidance for a finless rocket using neuroevolution. In Genetic and Evolutionary Computation Conference (pp. 2084-2095). Springer, Berlin, Heidelberg.2003.
  • Wertz, J. R., ed. and Larson, W. J., ed., Launch Systems, Space Mission Analysis and Design, 3rd ed., Microcosm Press, Hawthorne, CA, and Springer, New York, NY, pp. 719-744, 1999.
  • Benson, T., ed., “Rocket Stability,” NASA Glen Research Center [online], https://spaceflightsystems.grc.nasa.gov/education/rocket/rktstab.html. Yayın tarihi June 2014. Erişim tarihi Eylül 2, 2022.
  • Fraley, E. R., Design, Manufacturing, and Integration of Fins for 2017-2018 OSU ESRA 30k Rocket, 2018.
  • Hernandez, R. N., Singh, H., Messimer, S. L., Patterson, A. E., Design and performance of modular 3-D printed solid-propellant rocket airframes. Aerospace, 4(2), 17, 2017.
  • Rocketsschools. Rocket Stability.http://www.rockets4schools.org/images/Basic.Rocket.Stability.pdf.Erişim tarihi Eylül 1,2022
  • Nasa. Determining center of pressure-cp. On 14 Jan 03 Erişim tarihi Eylül 5, 2022. https://www.grc.nasa.gov/WWW/k12/VirtualAero/BottleRocket/airplane/rktcp.html
  • Roketsan. Model roketçilik.https://www.roketsan.com.tr/uploads/docs/1628594512_20.03.2020model-roketcilik-master-dokumanv04.pdf.Yayın tarihi 20.03.2020.Erişim tarihi Eylül 3, 2022.
  • Datye, A. Effects of Shark Caved Fins on Altitude Performance of a High-Powered Rocket. 2019 NCUR, 2019.
  • Bar-Haim, B., Seginer, A. Aerodynamics of wraparound fins. Journal of Spacecraft and Rockets, 20(4), 339-345. 1983.
  • Yarce, A., Rodríguez, J. S., Galvez, J., Gómez, A., García, M. J., Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model. In Journal of Physics: Conference Series (Vol. 850, No. 1, p. 012019). IOP Publishing, 2017.
  • Neutrium. Mach Number, Neutrium, https://neutrium.net/fluid_flow/mach-number/ Yayın tarihi October 2014. Erişim tarihi Eylül 1, 2022.
  • Negahban, S., Design of a Model Rocket Flight Logging System and In-Air Deployable Rover, 2019.
  • Nakka, R., Fins for Rocket Stability, Experimental Rocketry, https://www.nakkarocketry.net/fins.html.Erişim tarihi Eylül 1,2022.
  • Zhang, G. Q., Ji, L. C., Xu, Y., Schlüter, J., Parametric study of different fins for a rocket at supersonic flow. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(18), 3392-3404, 2015.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Cihan Özel 0000-0002-3227-6875

Cevher Kürşat Macit 0000-0003-0466-7788

Meral Özel 0000-0002-9516-4715

Publication Date March 28, 2023
Submission Date October 3, 2022
Published in Issue Year 2023 Volume: 35 Issue: 1

Cite

APA Özel, C., Macit, C. K., & Özel, M. (2023). Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(1), 175-193. https://doi.org/10.35234/fumbd.1183692
AMA Özel C, Macit CK, Özel M. Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2023;35(1):175-193. doi:10.35234/fumbd.1183692
Chicago Özel, Cihan, Cevher Kürşat Macit, and Meral Özel. “Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, no. 1 (March 2023): 175-93. https://doi.org/10.35234/fumbd.1183692.
EndNote Özel C, Macit CK, Özel M (March 1, 2023) Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 1 175–193.
IEEE C. Özel, C. K. Macit, and M. Özel, “Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, pp. 175–193, 2023, doi: 10.35234/fumbd.1183692.
ISNAD Özel, Cihan et al. “Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/1 (March 2023), 175-193. https://doi.org/10.35234/fumbd.1183692.
JAMA Özel C, Macit CK, Özel M. Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:175–193.
MLA Özel, Cihan et al. “Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, 2023, pp. 175-93, doi:10.35234/fumbd.1183692.
Vancouver Özel C, Macit CK, Özel M. Yeni Tip Çentikli Delta Kanat Modelinin Roketin Uçuş Performansına Etkilerinin Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(1):175-93.