Çinko Oksit Nanoparçacıkları Katkılı Polietersülfon Ultrafiltrasyon Membranlar
Yıl 2023,
Cilt: 35 Sayı: 2, 637 - 645, 01.09.2023
Evrim Çelik Madenli
,
Fulya Şen
,
Ahmet Erçin
Öz
Membranlar gıda, petrokimya, enerji endüstrilerinin yanı sıra yüksek giderim verimi ve düşük maliyeti nedeniyle su ve atık su arıtımında da yaygın olarak kullanılmaktadır. Fakat, membran uygulamalarında karşılaşılan en büyük sorun membran tıkanmasıdır. Membran tıkanmasını azaltmak için kullanılan yöntemlerden bir tanesi membran hidrofilikliğinin arttırılmasıdır. Membran sentezi sırasında membran hidrofilikliğini arttıracak katkı maddeleri eklenmesi ile membran hidrofilikliği arttırılabilmektedir. Yüksek yüzey / hacim oranı ve düşük maliyeti ile çinko oksit nanoparçacıkları (nZnO) ilgi çeken nanoparçacıklardan biridir. Bu çalışmada nZnO, polietersülfon (PES) membranlarda katkı maddesi olarak kullanılmıştır. nZnO katkılı PES (P/Z) membranlar faz geri çevrilmesi yöntemi kullanılarak hazırlanmıştır. Hazırlanan membranlar temas açısı, Fourier Dönüşümlü Kızıl Ötesi Spektrometresi (FTIR), Taramalı Elektron Mikroskobu (SEM) kullanılarak karakterize edilmiştir. Hazırlanan membranların saf su filtrasyonu ve protein giderim verimleri de incelenmiştir. Elde edilen sonuçlara göre nZnO ilavesi PES membranların hidrofilikliğini, porozitesini, saf su akısını, protein giderim verimini ve tıkanma direncini arttırmıştır.
Destekleyen Kurum
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
FLP-2021-8328 ve FBY-2018-5377/SDÜ3785
Teşekkür
Bu çalışma, Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından iki farklı proje ile (FLP-2021-8328 ve FBY-2018-5377/SDÜ3785) desteklenmiştir.
Kaynakça
- Daufin G, Escudier JP, Carrere H, Berot S, Fillaudeau L, Decloux M. Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 2001;79(C2):89-102.
- Ravanchi MT, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry: a review. Desalination 2009;235(1-3):199-244.
- Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energ 2011;88(4):981-1007.
- Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energ Environ Sci 2011;4(4):1147-60.
- Lee M, Wu ZT, Wang R, Li K. Micro-structured alumina hollow fibre membranes - Potential applications in wastewater treatment. J Membrane Sci 2014;461:39-48.
- Nasrollahi N, Vatanpour V, Aber S, Mahmoodi NM. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep Purif Technol 2018;192:369-82.
- Nguyen T, Roddick FA, Fan L. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes (Basel) 2012;2(4):804-40.
- Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J Membrane Sci 2012;389:155-61.
- Koyuncu I. Su/Atık su Arıtılması ve Geri Kazanılmasında Membran Teknolojileri ve Uygulamaları. Ankara: Yıldızlar Ofset; 2018.
- Geise GM, Lee HS, Miller DJ, Freeman BD, Mcgrath JE, Paul DR. Water Purification by Membranes: The Role of Polymer Science. J Polym Sci Pol Phys 2010;48(15):1685-718.
- Meng FG, Chae SR, Drews A, Kraume M, Shin HS, Yang FL. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research 2009;43(6):1489-512.
- Gohari RJ, Halakoo E, Nazri NAM, Lau WJ, Matsuura T, Ismail AF. Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 2014;335(1):87-95.
- Damodar RA, You SJ, Chou HH. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials 2009;172(2-3):1321-8.
- Leo CP, Lee WPC, Ahmad AL, Mohammad AW. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 2012;89:51-6.
- Celik-Madenli E, Cakmakcı O, Isguder I, Yigit NO, Kitis M, Koyuncu I, et al. Effects of the solvent ratio on carbon nanotube blended polymeric membranes. In: Figoli A, Hoinkis, J., Altinkaya, S.A., Bundschuh, J., editor Application of Nanotechnology in Membranes for Water Treatment. London: CRC Press; 2017.
- Aksu H. Türkiye’de İçmesuyu Arıtımında Membran Uygulamaları ve Uygulama Aşamasında Karşılaşılan İşletme Problemleri. Ankara: Tarım ve Orman Bakanlığı; 2019.
- Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011;278(1-3):343-53.
- Bae TH, Kim IC, Tak TM. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J Membrane Sci 2006;275(1-2):1-5.
- Ahmad AL, Sugumaran J, Shoparwe NF. Antifouling Properties of PES Membranes by Blending with ZnO Nanoparticles and NMP-Acetone Mixture as Solvent. Membranes-Basel 2018;8(4).
- Celik E, Park H, Choi H, Choi H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Research 2011;45(1):274-82.
- Celik E, Liu L, Choi H. Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Research 2011;45(16):5287-94.
- Celik Madenli E, Yanar N, Choi H. Enhanced antibacterial properties and suppressed biofilm growth on multi-walled carbon nanotube (MWCNT) blended polyethersulfone (PES) membranes. J Environ Chem Eng 2021;9(2).
- Celik E, Choi H. Carbon Nanotube/Polyethersulfone Composite Membranes for Water Filtration. In: Escobar I, Bruggeb B, editors. Modern Applications in Membrane Science and Technology. Washington DC: ACS Symposium Series, American Chemical Society; 2011, p. 257-69.
- Celik Madenli E, Ciftci ZI. Effects of the carbon nanotube and polymer amounts on ultrafiltration membranes. Environmental Engineering Research 2022;27(4).
- Gutul T, Rusu E, Condur N, Ursaki V, Goncearenco E, Vlazan P. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J Nanotech 2014;5:402-6.
- Mullani SB, Tawade AK, Tayade SN, Sharma KKK, Deshmukh SP, Mullani NB, et al. Synthesis of Ni(2+)ion doped ZnO-MWCNTs nanocomposites using anin situsol-gel method: an ultra sensitive non-enzymatic uric acid sensing electrode material. Rsc Adv 2020;10(61):36949-61.
- Bundit O, Wongsaprom K. Shape Control in Zinc Oxide nanostructures by Precipitation Method. J Phys Conf Ser 2018;1144.
- Tripathy BK, Kumar S, Kumar M, Debnath A. Microwave induced catalytic treatment of brilliant green dye with carbon doped zinc oxide nanoparticles: Central composite design, toxicity assessment and cost analysis. Environmental Nanotechnology, Monitoring and Management 2020;14:100361.
- Liu XT, Wang MS, Zhang SJ, Pan BC. Application potential of carbon nanotubes in water treatment: A review. J Environ Sci 2013;25(7):1263-80.
- Ding YY, Ma BW, Liu HJ, Qu JH. Effects of protein properties on ultrafiltration membrane fouling performance in water treatment. J Environ Sci 2019;77:273-81.
- Ma BW, Yu WZ, Liu HJ, Yao JB, Qu JH. Effect of iron/aluminum hydrolyzed precipitate layer on ultrafiltration membrane. Desalination 2013;330:16-21.
- Huner ID, Gulec HA. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma. Colloid Surface B 2017;160:510-9.
- Vanangarnudi A, Dumee LF, Duke MC, Yang X. Nanofiber Composite Membrane with Intrinsic Janus Surface for Reversed-Protein-Fouling Ultrafiltration. Acs Appl Mater Inter 2017;9(21):18328-37.
- Han MJ, Nam ST. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membrane Sci 2002;202(1-2):55-61.
- Huang ZQ, Chen K, Li SN, Yin XT, Zhang Z, Xu HT. Effect of ferrosoferric oxide content on the performances of polysulfone-ferrosoferric oxide ultrafiltration membranes. J Membrane Sci 2008;315(1-2):164-71.
- Vankelecom IFJ, Gevers LEM. Membrane Processes. Green Separation Processes: Fundamentals and Applications 2005:251-70.
- Ursino C, Castro-Munoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of Nanocomposite Membranes for Water Treatment. Membranes-Basel 2018;8(2).
- Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, et al. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 2015;349:66-77.
- Li X, Li JS, Van der Bruggen B, Sun XY, Shen JY, Hana WQ, et al. Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol-gel formed ZnO nanoparticles. Rsc Adv 2015;5(63):50711-9.
- Kiran SA, Thuyavan YL, Arthanareeswaran G, Matsuura T, Ismail AF. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem Eng J 2016;286:528-37.
- Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membrane Sci 2014;453:292-301.
- Toroghi M, Raisi A, Aroujalian A. Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym Advan Technol 2014;25(7):711-22.
- Rehan ZA, Gzara L, Khan SB, Alamry KA, El-Shahawi MS, Albeirutty MH, et al. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Pat Nanotech 2016;10(3):231-51.
- Akar N, Asar B, Dizge N, Koyuncu I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Membrane Sci 2013;437:216-26.
- Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen B. Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mater Chem 2011;21(28):10311-20.
Zinc Oxide Nanoparticles Blended Polyethersulfone Ultrafiltration Membranes
Yıl 2023,
Cilt: 35 Sayı: 2, 637 - 645, 01.09.2023
Evrim Çelik Madenli
,
Fulya Şen
,
Ahmet Erçin
Öz
Membranes are widely used in the food industry, petrochemical industry, energy industry as well as water and wastewater treatment due to their high removal efficiency and low cost. However, the main disadvantage of membrane applications is fouling. One of the methods used to prevent membrane fouling is to increase membrane hydrophilicity. Membrane hydrophilicity can be increased by using additives during membrane synthesis. Zinc oxide nanoparticles (nZnO) are one of the interesting nanoparticles with their high surface-to-volume ratio and low cost. nZnO were used as additives in polyethersulfone (PES) membranes in this study. nZnO doped PES (P/Z) membranes were prepared using the phase inversion method. Prepared membranes were characterized using water contact angle, Fourier Transform Infrared Spectrometer (FTIR), and Scanning Electron Microscopy (SEM). Pure water filtration performance and protein removal efficiency of the prepared membranes were also investigated. The results of this study show that the addition of nZnO increased the hydrophilicity, porosity, pure water flux, protein removal efficiency and the fouling resistance of the PES membranes.
Proje Numarası
FLP-2021-8328 ve FBY-2018-5377/SDÜ3785
Kaynakça
- Daufin G, Escudier JP, Carrere H, Berot S, Fillaudeau L, Decloux M. Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 2001;79(C2):89-102.
- Ravanchi MT, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry: a review. Desalination 2009;235(1-3):199-244.
- Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energ 2011;88(4):981-1007.
- Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energ Environ Sci 2011;4(4):1147-60.
- Lee M, Wu ZT, Wang R, Li K. Micro-structured alumina hollow fibre membranes - Potential applications in wastewater treatment. J Membrane Sci 2014;461:39-48.
- Nasrollahi N, Vatanpour V, Aber S, Mahmoodi NM. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep Purif Technol 2018;192:369-82.
- Nguyen T, Roddick FA, Fan L. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes (Basel) 2012;2(4):804-40.
- Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J Membrane Sci 2012;389:155-61.
- Koyuncu I. Su/Atık su Arıtılması ve Geri Kazanılmasında Membran Teknolojileri ve Uygulamaları. Ankara: Yıldızlar Ofset; 2018.
- Geise GM, Lee HS, Miller DJ, Freeman BD, Mcgrath JE, Paul DR. Water Purification by Membranes: The Role of Polymer Science. J Polym Sci Pol Phys 2010;48(15):1685-718.
- Meng FG, Chae SR, Drews A, Kraume M, Shin HS, Yang FL. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research 2009;43(6):1489-512.
- Gohari RJ, Halakoo E, Nazri NAM, Lau WJ, Matsuura T, Ismail AF. Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 2014;335(1):87-95.
- Damodar RA, You SJ, Chou HH. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials 2009;172(2-3):1321-8.
- Leo CP, Lee WPC, Ahmad AL, Mohammad AW. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 2012;89:51-6.
- Celik-Madenli E, Cakmakcı O, Isguder I, Yigit NO, Kitis M, Koyuncu I, et al. Effects of the solvent ratio on carbon nanotube blended polymeric membranes. In: Figoli A, Hoinkis, J., Altinkaya, S.A., Bundschuh, J., editor Application of Nanotechnology in Membranes for Water Treatment. London: CRC Press; 2017.
- Aksu H. Türkiye’de İçmesuyu Arıtımında Membran Uygulamaları ve Uygulama Aşamasında Karşılaşılan İşletme Problemleri. Ankara: Tarım ve Orman Bakanlığı; 2019.
- Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011;278(1-3):343-53.
- Bae TH, Kim IC, Tak TM. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J Membrane Sci 2006;275(1-2):1-5.
- Ahmad AL, Sugumaran J, Shoparwe NF. Antifouling Properties of PES Membranes by Blending with ZnO Nanoparticles and NMP-Acetone Mixture as Solvent. Membranes-Basel 2018;8(4).
- Celik E, Park H, Choi H, Choi H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Research 2011;45(1):274-82.
- Celik E, Liu L, Choi H. Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Research 2011;45(16):5287-94.
- Celik Madenli E, Yanar N, Choi H. Enhanced antibacterial properties and suppressed biofilm growth on multi-walled carbon nanotube (MWCNT) blended polyethersulfone (PES) membranes. J Environ Chem Eng 2021;9(2).
- Celik E, Choi H. Carbon Nanotube/Polyethersulfone Composite Membranes for Water Filtration. In: Escobar I, Bruggeb B, editors. Modern Applications in Membrane Science and Technology. Washington DC: ACS Symposium Series, American Chemical Society; 2011, p. 257-69.
- Celik Madenli E, Ciftci ZI. Effects of the carbon nanotube and polymer amounts on ultrafiltration membranes. Environmental Engineering Research 2022;27(4).
- Gutul T, Rusu E, Condur N, Ursaki V, Goncearenco E, Vlazan P. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J Nanotech 2014;5:402-6.
- Mullani SB, Tawade AK, Tayade SN, Sharma KKK, Deshmukh SP, Mullani NB, et al. Synthesis of Ni(2+)ion doped ZnO-MWCNTs nanocomposites using anin situsol-gel method: an ultra sensitive non-enzymatic uric acid sensing electrode material. Rsc Adv 2020;10(61):36949-61.
- Bundit O, Wongsaprom K. Shape Control in Zinc Oxide nanostructures by Precipitation Method. J Phys Conf Ser 2018;1144.
- Tripathy BK, Kumar S, Kumar M, Debnath A. Microwave induced catalytic treatment of brilliant green dye with carbon doped zinc oxide nanoparticles: Central composite design, toxicity assessment and cost analysis. Environmental Nanotechnology, Monitoring and Management 2020;14:100361.
- Liu XT, Wang MS, Zhang SJ, Pan BC. Application potential of carbon nanotubes in water treatment: A review. J Environ Sci 2013;25(7):1263-80.
- Ding YY, Ma BW, Liu HJ, Qu JH. Effects of protein properties on ultrafiltration membrane fouling performance in water treatment. J Environ Sci 2019;77:273-81.
- Ma BW, Yu WZ, Liu HJ, Yao JB, Qu JH. Effect of iron/aluminum hydrolyzed precipitate layer on ultrafiltration membrane. Desalination 2013;330:16-21.
- Huner ID, Gulec HA. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma. Colloid Surface B 2017;160:510-9.
- Vanangarnudi A, Dumee LF, Duke MC, Yang X. Nanofiber Composite Membrane with Intrinsic Janus Surface for Reversed-Protein-Fouling Ultrafiltration. Acs Appl Mater Inter 2017;9(21):18328-37.
- Han MJ, Nam ST. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membrane Sci 2002;202(1-2):55-61.
- Huang ZQ, Chen K, Li SN, Yin XT, Zhang Z, Xu HT. Effect of ferrosoferric oxide content on the performances of polysulfone-ferrosoferric oxide ultrafiltration membranes. J Membrane Sci 2008;315(1-2):164-71.
- Vankelecom IFJ, Gevers LEM. Membrane Processes. Green Separation Processes: Fundamentals and Applications 2005:251-70.
- Ursino C, Castro-Munoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of Nanocomposite Membranes for Water Treatment. Membranes-Basel 2018;8(2).
- Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, et al. Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 2015;349:66-77.
- Li X, Li JS, Van der Bruggen B, Sun XY, Shen JY, Hana WQ, et al. Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol-gel formed ZnO nanoparticles. Rsc Adv 2015;5(63):50711-9.
- Kiran SA, Thuyavan YL, Arthanareeswaran G, Matsuura T, Ismail AF. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem Eng J 2016;286:528-37.
- Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membrane Sci 2014;453:292-301.
- Toroghi M, Raisi A, Aroujalian A. Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym Advan Technol 2014;25(7):711-22.
- Rehan ZA, Gzara L, Khan SB, Alamry KA, El-Shahawi MS, Albeirutty MH, et al. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Pat Nanotech 2016;10(3):231-51.
- Akar N, Asar B, Dizge N, Koyuncu I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Membrane Sci 2013;437:216-26.
- Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen B. Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mater Chem 2011;21(28):10311-20.