Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi

Yıl 2024, Cilt: 36 Sayı: 1, 369 - 381, 28.03.2024
https://doi.org/10.35234/fumbd.1337921

Öz

İşlem hızı giderek artan mikro işlemcilerin etkin soğutmaya olan ihtiyaçları da aynı ölçüde artış göstermektedir. Bu ise daha etkili soğutma yöntemleri üzerinde çalışmaları artırmaktadır. Sıvı metaller ile soğutulan mini/mikro kanallı soğutucular, yüksek ısı iletim katsayıları nedeni ile etkin soğutma sağlayabilmektedirler. Bu çalışmada, Galinstan ile soğutulan bir mini kanallı soğutucuda, kanatçık kullanımının ısıl direnç katsayısına ve oluşan basınç kaybına etkileri incelenmiştir. Kanatçıkların farklı konfigürasyonlarda kanal içinde yerleşimi ile oluşturulan ve toplamda 70 farklı modelden oluşan sayısal analiz sonucunda; kanatçıklar arası mesafenin 1,5 mm altında olması durumunda kayda değer bir ısıl performans iyileşmesi gözlemlenmemekle birlikte aşırı basınç kaybı oluşturduğu belirlenmiştir. Kanatçık boyunun 0,3 mm ve kanatçıklar arası mesafenin 1,5 mm olduğu durumda, kanatçıksız duruma göre minimum akışkan giriş hızı koşulunda %15,9 oranında ısıl performans iyileşmesi elde edilmiştir. Diğer yandan ise bu durumda 95 kPa değerinde basınç kaybı artışı yaşanmıştır.

Kaynakça

  • Guarnieri M. The unreasonable accuracy of Moore's Law [Historical]. IEEE Industrial Electronics Magazine 2016; 10(1): 40-43.
  • Jing D, He L. Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes. Int. J. Heat Mass Tran 2019; 143: 118604.
  • Liu D, Zhao FY, Yang HX, Tang GF. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy 2015; 83: 29-36.
  • Dang T, Teng JT. Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers. Heat and Mass Transfer 2011; 47: 1311-1322.
  • Feng Z, Hu Z, Lan Y, Huang Z, Zhang J. Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink. International Journal of Thermal Sciences 2021; 165: 106956.
  • Zhang Q, Feng Z, Zhang J, Guo F, Huang S, Li Z. Design of a mini-channel heat sink for high-heat-flux electronic devices. Applied Thermal Engineering 2022; 216: 119053.
  • Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, Sartipzadeh O. Experimental study on cooling performance of sinusoidal–wavy minichannel heat sink. Applied Thermal Engineering 2016; 92: 50-61.
  • Mathew VK, Hotta TK. Performance enhancement of high heat generating IC chips using paraffin wax based mini-channels-a combined experimental and numerical approach. International Journal of Thermal Sciences 2021; 164:106865.
  • Hoang CH, Tradat M, Manaserh Y, Ramakrisnan B, Rangarajan S, Hadad Y, Schiffres S, Sammakia B. Liquid cooling utilizing a hybrid microchannel/multi-jet heat sink: A component level study of commercial product. International Electronic Packaging Technical Conference and Exhibition, American Society of Mechanical Engineers 2020; Vol. 84041, p. V001T08A008.
  • Kim SM, Mudawar I. Thermal design and operational limits of two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer 2017; 106: 861-876.
  • Zhang Q, Feng Z, Li Z, Chen Z, Huang S, Zhang J, Guo F. Numerical investigation on hydraulic and thermal performances of a mini-channel heat sink with twisted ribs. International Journal of Thermal Sciences 2022; 179: 107718.
  • Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Applied Physics Letters 2004; 85: 506–508.
  • Prokhorenko VY, Roshchupkin VV, Pokrasin MA, Prokhorenko SV, Kotov VV. Liquid gallium: potential uses as a heat-transfer agent. High Temperature 2000; 38(6): 954-968.
  • Al-Neama AF, Kapur N, Summers J, Thompson HM. Thermal management of GaN HEMT devices using serpentine minichannel heat sinks. Applied Thermal Engineering 2018; 140: 622-636.
  • Bo G, Ren L, Xu X, Du Y, Dou S. Recent progress on liquid metals and their applications. Advances in Physics: X 2018; 3(1): 412-441.
  • Evans DS, Prince A. Thermal analysis of ga-in-sn system. Metal Science 1978; 12(9): 411-414.
  • Deng YG, Liu J, Zhou YX. Liquid metal based mini/micro channel cooling device. International Conference on Nanochannels, Microchannels, and Minichannels; 2009; Pohang, South Korea. 253-259.
  • Luo M, Liu J. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices. Frontiers in Energy 2013; 7: 479-486.
  • Tawk M, Avenas Y, Kedous-Lebouc A, Petit M. Numerical and experimental investigations of the thermal management of power electronics with liquid metal mini-channel coolers. IEEE Transactions on Industry Applications 2013; 49(3): 1421-1429.
  • Yang XH, Tan SC, Ding YJ, Liu J. Flow and thermal modeling and optimization of micro/mini-channel heat sink. Applied Thermal Engineering 2017; 117: 289-296.
  • Zhang XD, Yang XH, Zhou YX, Rao W, Gao JY, Ding YJ, Shu QQ, Liu J. Experimental investigation of Galinstan based mini-channel cooling for high heat flux and large heat power thermal management. Energy Convers. Manage. 2019; 185: 248–258.
  • Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. International Journal of Heat and Mass Transfer 2020; 150: 119265.
  • Sarowar MT. Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates. Ceramics International 2021; 47(1): 214-225.
  • Chen Z, Qian P, Huang Z, Zhang W, Liu M. Study on flow and heat transfer of liquid metal in the microchannel heat sink. International Journal of Thermal Sciences 2023; 183: 107840.
  • Kalkan O. Multi-objective optimization of a liquid metal cooled heat sink for electronic cooling applications. International Journal of Thermal Sciences 2023; 190: 108325.
  • Xiang X, Liu W, Fan A. Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics. International Journal of Thermal Sciences 2022; 173: 107375.
  • Rosettani J, Ahmed W, Geddis P, Wu L, Clements B. Experimental and numerical investigation of gas-liquid metal two-phase flow pumping. International Journal of Thermofluids 2021; 10: 100092.
  • Yakhot V, Orszag SA. Renormalized group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1986; 1: 3-51.

Investigation of the Thermohydraulic Effects of Using Fin in Liquid Metal Cooled Mini-channel Heat Sinks for Microprocessors

Yıl 2024, Cilt: 36 Sayı: 1, 369 - 381, 28.03.2024
https://doi.org/10.35234/fumbd.1337921

Öz

The need for effective cooling of microprocessors, whose processing speed is increasing, is also increasing at the same rate. This increases the work on more effective cooling methods. Mini/micro-channel heat sinks cooled with liquid metals can provide effective cooling due to their high heat conductivity. In this study, the impact of using fins on the thermal resistance coefficient and the resulting pressure drop in a mini-channel heat sink cooled with Galinstan is investigated. As a result of the numerical analysis created by the arrangement of the fins in the channel in different configurations and consisting of a total of 70 different models, no significant thermal performance improvement is observed when the distance between the fins is less than 1.5 mm, but it has been determined that excessive pressure drop occurs. When the fin length is 0.3 mm and the distance between the fins is 1.5 mm, a thermal performance improvement of 15.9% was obtained in the minimum fluid inlet velocity condition compared to the case without fins. On the other hand, there was an increase in pressure loss of 95 kPa in this case.

Kaynakça

  • Guarnieri M. The unreasonable accuracy of Moore's Law [Historical]. IEEE Industrial Electronics Magazine 2016; 10(1): 40-43.
  • Jing D, He L. Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes. Int. J. Heat Mass Tran 2019; 143: 118604.
  • Liu D, Zhao FY, Yang HX, Tang GF. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy 2015; 83: 29-36.
  • Dang T, Teng JT. Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers. Heat and Mass Transfer 2011; 47: 1311-1322.
  • Feng Z, Hu Z, Lan Y, Huang Z, Zhang J. Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink. International Journal of Thermal Sciences 2021; 165: 106956.
  • Zhang Q, Feng Z, Zhang J, Guo F, Huang S, Li Z. Design of a mini-channel heat sink for high-heat-flux electronic devices. Applied Thermal Engineering 2022; 216: 119053.
  • Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, Sartipzadeh O. Experimental study on cooling performance of sinusoidal–wavy minichannel heat sink. Applied Thermal Engineering 2016; 92: 50-61.
  • Mathew VK, Hotta TK. Performance enhancement of high heat generating IC chips using paraffin wax based mini-channels-a combined experimental and numerical approach. International Journal of Thermal Sciences 2021; 164:106865.
  • Hoang CH, Tradat M, Manaserh Y, Ramakrisnan B, Rangarajan S, Hadad Y, Schiffres S, Sammakia B. Liquid cooling utilizing a hybrid microchannel/multi-jet heat sink: A component level study of commercial product. International Electronic Packaging Technical Conference and Exhibition, American Society of Mechanical Engineers 2020; Vol. 84041, p. V001T08A008.
  • Kim SM, Mudawar I. Thermal design and operational limits of two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer 2017; 106: 861-876.
  • Zhang Q, Feng Z, Li Z, Chen Z, Huang S, Zhang J, Guo F. Numerical investigation on hydraulic and thermal performances of a mini-channel heat sink with twisted ribs. International Journal of Thermal Sciences 2022; 179: 107718.
  • Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Applied Physics Letters 2004; 85: 506–508.
  • Prokhorenko VY, Roshchupkin VV, Pokrasin MA, Prokhorenko SV, Kotov VV. Liquid gallium: potential uses as a heat-transfer agent. High Temperature 2000; 38(6): 954-968.
  • Al-Neama AF, Kapur N, Summers J, Thompson HM. Thermal management of GaN HEMT devices using serpentine minichannel heat sinks. Applied Thermal Engineering 2018; 140: 622-636.
  • Bo G, Ren L, Xu X, Du Y, Dou S. Recent progress on liquid metals and their applications. Advances in Physics: X 2018; 3(1): 412-441.
  • Evans DS, Prince A. Thermal analysis of ga-in-sn system. Metal Science 1978; 12(9): 411-414.
  • Deng YG, Liu J, Zhou YX. Liquid metal based mini/micro channel cooling device. International Conference on Nanochannels, Microchannels, and Minichannels; 2009; Pohang, South Korea. 253-259.
  • Luo M, Liu J. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices. Frontiers in Energy 2013; 7: 479-486.
  • Tawk M, Avenas Y, Kedous-Lebouc A, Petit M. Numerical and experimental investigations of the thermal management of power electronics with liquid metal mini-channel coolers. IEEE Transactions on Industry Applications 2013; 49(3): 1421-1429.
  • Yang XH, Tan SC, Ding YJ, Liu J. Flow and thermal modeling and optimization of micro/mini-channel heat sink. Applied Thermal Engineering 2017; 117: 289-296.
  • Zhang XD, Yang XH, Zhou YX, Rao W, Gao JY, Ding YJ, Shu QQ, Liu J. Experimental investigation of Galinstan based mini-channel cooling for high heat flux and large heat power thermal management. Energy Convers. Manage. 2019; 185: 248–258.
  • Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. International Journal of Heat and Mass Transfer 2020; 150: 119265.
  • Sarowar MT. Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates. Ceramics International 2021; 47(1): 214-225.
  • Chen Z, Qian P, Huang Z, Zhang W, Liu M. Study on flow and heat transfer of liquid metal in the microchannel heat sink. International Journal of Thermal Sciences 2023; 183: 107840.
  • Kalkan O. Multi-objective optimization of a liquid metal cooled heat sink for electronic cooling applications. International Journal of Thermal Sciences 2023; 190: 108325.
  • Xiang X, Liu W, Fan A. Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics. International Journal of Thermal Sciences 2022; 173: 107375.
  • Rosettani J, Ahmed W, Geddis P, Wu L, Clements B. Experimental and numerical investigation of gas-liquid metal two-phase flow pumping. International Journal of Thermofluids 2021; 10: 100092.
  • Yakhot V, Orszag SA. Renormalized group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1986; 1: 3-51.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji, Makine Mühendisliğinde Sayısal Yöntemler
Bölüm MBD
Yazarlar

Orhan Kalkan 0000-0002-9664-1819

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 4 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 1

Kaynak Göster

APA Kalkan, O. (2024). Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 369-381. https://doi.org/10.35234/fumbd.1337921
AMA Kalkan O. Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2024;36(1):369-381. doi:10.35234/fumbd.1337921
Chicago Kalkan, Orhan. “Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 1 (Mart 2024): 369-81. https://doi.org/10.35234/fumbd.1337921.
EndNote Kalkan O (01 Mart 2024) Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 1 369–381.
IEEE O. Kalkan, “Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, ss. 369–381, 2024, doi: 10.35234/fumbd.1337921.
ISNAD Kalkan, Orhan. “Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/1 (Mart 2024), 369-381. https://doi.org/10.35234/fumbd.1337921.
JAMA Kalkan O. Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:369–381.
MLA Kalkan, Orhan. “Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, 2024, ss. 369-81, doi:10.35234/fumbd.1337921.
Vancouver Kalkan O. Mikro İşlemciler için Sıvı Metal Soğutmalı Mini Kanallı Soğutucularda Kanatçık Kullanımının Termohidrolik Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(1):369-81.