Yapısal Dayanıklılığın Artırılması: Çelik T-Bağlantılar İçin Yeni Çelik Manşon Yöntemi
Yıl 2024,
Cilt: 36 Sayı: 1, 147 - 158, 28.03.2024
Muhammed Atar
,
Berat Çete
Öz
Yeni bir çelik manşon methodu, çelik yapıların aşırı yükleme koşullarında performansını artırmayı amaçlayan bir yöntem olarak tanıtılmıştır. Daha önceki araştırmalar genellikle bu manşon sisteminin uygulanmasıyla ilgili sonlu elemanlar yöntemi odaklı simulasyonlar ile çalışılmış ve etkililiğini doğrulamak için daha fazla araştırmanın gerekliliği vurgulanmıştır. Bu araştırma makalesi, yeni tanıtılan çelik manşon kullanım metodu ile bir civata üzerinde deformasyon kapasitesi ve dayanıklılığın nasıl etkilendiğini amaçlayan nümerik bir analiz sunmaktadır. Çalışma, farklı geometrik parametrelere sahip çelik manşon kullanılan bir T-profil bağlantısının kullanımını içermektedir. Dayanıklılık ve deformasyon kapasitesi üzerindeki etkiyi değerlendirmek için bu bulgular ile çelik manşon kullanılmadan T-profil bir bağlantının davranışı arasında bir karşılaştırma yapılmıştır. Ayrıca, ilave parametrik çalışmalar için Sonlu Eleman modelleri kullanılmıştır. Araştırma sonuçları, çelik manşon kullanımı ile cıvatalı bağlantının deformasyon kapasitesinde belirgin artış gözlemlenmiş ve aynı zamanda civataların kendi dayanıklılığını ve başlangıç sertliğini korudukları görülmüştür. Bu çalışmada önerilen çelik manşon yöntemi, civatalı bağlantıların dayanıklılığını civata hasarını geciktirerek önemli ölçüde artırmaktadır.
Kaynakça
- Khandelwal, K., & El-Tawil, S. (2007). Collapse behavior of steel special moment resisting frame connections. Journal of Structural Engineering, 133(5), 646-655.
- de la Croix Kombate, T.J. and Taşkın, K., 2022. State-of-the-art review on the behaviour of T-stubs and prying action. Journal of Constructional Steel Research, 191, p.107203.
- Segui, W.T., 2012. Steel design. Cengage Learning.
Eurocode C. 3: Design of steel structures, part 1-8: Design of joints (2005) Brussels: EN1993-1-8, European Committee for Standardization
- Dinu, F., Dubina, D., Marginean, I., Neagu, C., & Petran, I. (2015). Axial strength and deformation demands for T-stub connection components at catenary stage in the beams. In 8th International Conference on Behavior of Steel Structures in Seismic Areas (pp. 623-630).
- Piluso, V., & Rizzano, G. (2008). Experimental analysis and modelling of bolted T-stubs under cyclic loads. Journal of Constructional Steel Research, 64(6), 655-669.
- Tartaglia, R., D'Aniello, M., & Zimbru, M. (2020, October). Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations. In Structures (Vol. 27, pp. 2137-2155). Elsevier.
- Anwar, G. A. (2017). Ultimate deformation and resistance capacity of bolted T-Stub connections under different loading conditions (Master's thesis, České vysoké učení technické v Praze. Vypočetní a informační centrum.)
- Bezerra, L. M., Bonilla, J., Silva, W. A., & Matias, W. T. (2020). Experimental and numerical studies of bolted T-stub steel connection with different flange thicknesses connected to a rigid base. Engineering structures, 218, 110770.
- Swanson, J. A., & Leon, R. T. (2000). Bolted steel connections: tests on T-stub components. Journal of Structural Engineering, 126(1), 50-56.
- Swanson, J. A., & Leon, R. T. (2001). Stiffness modeling of bolted T-stub connection components. Journal of structural engineering, 127(5), 498-505.
- Swanson, J. A., Kokan, D. S., & Leon, R. T. (2002). Advanced finite element modeling of bolted T-stub connection components. Journal of Constructional Steel Research, 58(5-8), 1015-1031.
- Francavilla A.B., Latour M., Piluso V., Rizzano G. Simplified finite element analysis of bolted T-stub connection components Eng. Struct., 100 (2015), pp. 656-664
- Zhang, Y., Gao, S., Guo, L., Qu, J. and Wang, S., 2022. Ultimate tensile behavior of bolted T-stub connections with preload. Journal of Building Engineering, 47, p.103833.
- Zaharia, R., & Dubina, D. (2006). Stiffness of joints in bolted connected cold-formed steel trusses. Journal of constructional steel research, 62(3), 240-249.
- Özkılıç, Y. O. (2021). The capacities of thin plated stiffened T-stubs. Journal of Constructional Steel Research, 186, 106912.
- Wang, M., Zhang, C., Sun, Y., & Dong, K. (2022). Seismic performance of steel frame with replaceable low yield point steel connection components and the effect of structural fuses. Journal of Building Engineering, 47, 103862.
- Trautner, C., Hutchinson, T., Grosser, P., Piccinin, R., & Silva, J. (2019). Shake table testing of a miniature steel building with ductile‐anchor, uplifting‐column base connections for improved seismic performance. Earthquake Engineering & Structural Dynamics, 48(2), 173-187.
- Inamasu, H., Sousa, A. A., Bartrina, G. G., & Lignos, D. (2019, September). Exposed Column Base Connections for Minimizing Earthquake-induced Residual Deformations in Steel Moment-Resisting Framess. In [Proceedings of the SECED 2019 Conference] (No. CONF).
- Shaheen, M. A., Foster, A. S., & Cunningham, L. S. (2020, December). A novel device to improve robustness of end plate beam-column connections. In Structures (Vol. 28, pp. 2415-2423). Elsevier.
- Shaheen, M. A., Atar, M., & Cunningham, L. S. (2023). Enhancing progressive collapse resistance of steel structures using a new bolt sleeve device. Journal of Constructional Steel Research, 203, 107843.
- Shaheen, M. A., Foster, A. S., & Cunningham, L. S. (2022). A novel device to improve robustness of end plate beam–column connections: Analytical model development. Thin-Walled Structures, 172, 108878.
- Shaheen, M. A., Tsavdaridis, K. D., Ferreira, F. P. V., & Cunningham, L. S. (2023). Rotational capacity of exposed base plate connections with various configurations of anchor rod sleeves. Journal of Constructional Steel Research, 201, 107754.
- Liu, M., Zhu, X., Wang, P., Tuoya, W., & Hu, S. (2017). Tension strength and design method for thread-fixed one-side bolted T-stub. Engineering Structures, 150, 918-933.
- European Committee for Standardization (CEN). NS-EN 1090-2:2008 +A1:2011, execution of steel structures and aluminum structures – part 2: technical requirements for steel structures: Norwegian Standard; 2008.
Enhancing Structural Resilience: Exploring the Novel Sleeve Method for Steel T-Stub Connections
Yıl 2024,
Cilt: 36 Sayı: 1, 147 - 158, 28.03.2024
Muhammed Atar
,
Berat Çete
Öz
A new sleeve device has been introduced with the aim of enhancing the performance of steel structures under extreme loading conditions. Previous research has primarily focused on numerical simulations of this sleeve's application, emphasizing the need for further investigation to validate its effectiveness. This research paper presents a numerical analysis that explores how the sleeve device influences the deformation capacity and strength of a bolt up to the point of failure. The study involved the use of a T-stub connection with multiple sleeves, each featuring different geometric parameters. To assess the impact on strength and deformation capacity, a comparison was drawn between these findings and the behavior of a T-stub bolted connection without using the sleeve. In addition, Finite Element (FE) models were employed for additional parametric studies. The test outcomes demonstrated a substantial increase in the deformability of the bolted connection when utilizing the sleeve device, all the while preserving the strength and initial stiffness of the bolts. This proposed sleeve method in the study significantly enhances the connection's capacity by delaying bolt failure.
Kaynakça
- Khandelwal, K., & El-Tawil, S. (2007). Collapse behavior of steel special moment resisting frame connections. Journal of Structural Engineering, 133(5), 646-655.
- de la Croix Kombate, T.J. and Taşkın, K., 2022. State-of-the-art review on the behaviour of T-stubs and prying action. Journal of Constructional Steel Research, 191, p.107203.
- Segui, W.T., 2012. Steel design. Cengage Learning.
Eurocode C. 3: Design of steel structures, part 1-8: Design of joints (2005) Brussels: EN1993-1-8, European Committee for Standardization
- Dinu, F., Dubina, D., Marginean, I., Neagu, C., & Petran, I. (2015). Axial strength and deformation demands for T-stub connection components at catenary stage in the beams. In 8th International Conference on Behavior of Steel Structures in Seismic Areas (pp. 623-630).
- Piluso, V., & Rizzano, G. (2008). Experimental analysis and modelling of bolted T-stubs under cyclic loads. Journal of Constructional Steel Research, 64(6), 655-669.
- Tartaglia, R., D'Aniello, M., & Zimbru, M. (2020, October). Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations. In Structures (Vol. 27, pp. 2137-2155). Elsevier.
- Anwar, G. A. (2017). Ultimate deformation and resistance capacity of bolted T-Stub connections under different loading conditions (Master's thesis, České vysoké učení technické v Praze. Vypočetní a informační centrum.)
- Bezerra, L. M., Bonilla, J., Silva, W. A., & Matias, W. T. (2020). Experimental and numerical studies of bolted T-stub steel connection with different flange thicknesses connected to a rigid base. Engineering structures, 218, 110770.
- Swanson, J. A., & Leon, R. T. (2000). Bolted steel connections: tests on T-stub components. Journal of Structural Engineering, 126(1), 50-56.
- Swanson, J. A., & Leon, R. T. (2001). Stiffness modeling of bolted T-stub connection components. Journal of structural engineering, 127(5), 498-505.
- Swanson, J. A., Kokan, D. S., & Leon, R. T. (2002). Advanced finite element modeling of bolted T-stub connection components. Journal of Constructional Steel Research, 58(5-8), 1015-1031.
- Francavilla A.B., Latour M., Piluso V., Rizzano G. Simplified finite element analysis of bolted T-stub connection components Eng. Struct., 100 (2015), pp. 656-664
- Zhang, Y., Gao, S., Guo, L., Qu, J. and Wang, S., 2022. Ultimate tensile behavior of bolted T-stub connections with preload. Journal of Building Engineering, 47, p.103833.
- Zaharia, R., & Dubina, D. (2006). Stiffness of joints in bolted connected cold-formed steel trusses. Journal of constructional steel research, 62(3), 240-249.
- Özkılıç, Y. O. (2021). The capacities of thin plated stiffened T-stubs. Journal of Constructional Steel Research, 186, 106912.
- Wang, M., Zhang, C., Sun, Y., & Dong, K. (2022). Seismic performance of steel frame with replaceable low yield point steel connection components and the effect of structural fuses. Journal of Building Engineering, 47, 103862.
- Trautner, C., Hutchinson, T., Grosser, P., Piccinin, R., & Silva, J. (2019). Shake table testing of a miniature steel building with ductile‐anchor, uplifting‐column base connections for improved seismic performance. Earthquake Engineering & Structural Dynamics, 48(2), 173-187.
- Inamasu, H., Sousa, A. A., Bartrina, G. G., & Lignos, D. (2019, September). Exposed Column Base Connections for Minimizing Earthquake-induced Residual Deformations in Steel Moment-Resisting Framess. In [Proceedings of the SECED 2019 Conference] (No. CONF).
- Shaheen, M. A., Foster, A. S., & Cunningham, L. S. (2020, December). A novel device to improve robustness of end plate beam-column connections. In Structures (Vol. 28, pp. 2415-2423). Elsevier.
- Shaheen, M. A., Atar, M., & Cunningham, L. S. (2023). Enhancing progressive collapse resistance of steel structures using a new bolt sleeve device. Journal of Constructional Steel Research, 203, 107843.
- Shaheen, M. A., Foster, A. S., & Cunningham, L. S. (2022). A novel device to improve robustness of end plate beam–column connections: Analytical model development. Thin-Walled Structures, 172, 108878.
- Shaheen, M. A., Tsavdaridis, K. D., Ferreira, F. P. V., & Cunningham, L. S. (2023). Rotational capacity of exposed base plate connections with various configurations of anchor rod sleeves. Journal of Constructional Steel Research, 201, 107754.
- Liu, M., Zhu, X., Wang, P., Tuoya, W., & Hu, S. (2017). Tension strength and design method for thread-fixed one-side bolted T-stub. Engineering Structures, 150, 918-933.
- European Committee for Standardization (CEN). NS-EN 1090-2:2008 +A1:2011, execution of steel structures and aluminum structures – part 2: technical requirements for steel structures: Norwegian Standard; 2008.