Araştırma Makalesi
BibTex RIS Kaynak Göster

Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi

Yıl 2024, Cilt: 36 Sayı: 1, 211 - 220, 28.03.2024
https://doi.org/10.35234/fumbd.1385153

Öz

Çinko ekstraksiyon artığı (Ç.E.A) önemli miktarda çinko, kurşun, vb. metal bileşikleri içerir, dolayısıyla ikincil bir metal kaynağı olarak kabul edilirler. Bu çalışmada, çinko ekstraksiyon artığının sülfürik asit ve potasyum dikromat varlığında çeşitli parametrelerde selektif olarak liç edilerek optimum şartlarda endüstriyel korozyon önleyici çinko kromat kompleks çözeltisi (Zn(CrO4)2-) üretilmeye çalışılmıştır. Bunun için liç deneyleri, çoklu manyetik karıştırıcılı balon ısıtıcı bir düzenek vasıtasıyla 100 ml’lik cam balonlarda gerçekleştirilmiştir. Elde edilen sonuçlara göre artan liç sıcaklığı ile birlikte çinko kazanımının arttığı diğer taraftan selektifliği azaltan demirin ise sınırlı oranda çözündüğü belirlenmiştir. Optimum şartlar olarak 0.5 M sülfürik asit (H2SO4) derişimi, 0.5 M potasyum dikromat (K2Cr2O7) derişimi, 368 K liç sıcaklığı, 180 dk liç süresi, 25 mL/g sıvı-katı oranı ve 600 rpm karıştırma hızında Zn ve Fe ekstraksiyon verimleri sırasıyla %81.5 ve %5.3 olarak bulunmuştur. Diğer taraftan liç çözeltisinde çinko kromat kompleksi varlığını ortaya koymak için yapılan Raman spektroskopisi analizinde Zn2+ iyonlarının kromat (CrO42-) ile koordinasyon halinde bulunduğu belirlendi. Raman spektroskopisi ile hesaplanan koordinasyon sayısının 3,6 olduğu ortaya çıktı, bu da çözeltide Zn(CrO4)2- mevcudiyetinin var olduğunu ortaya koymaktadır. Ayrıca optimum şartlarda Pb’nin hiç çözünmediği ve liç kalıntısında sülfatları ve/veya kısmen kromatları şeklinde kaldığı saptandı.

Kaynakça

  • de Souza AD, Pina PS, Leão VA. Bioleaching and chemical leaching as an integrated process in the zinc industry. Miner Eng 2007;20:591–9.
  • Altundogan, H.S.; Erdem, M.; Orhan, R.; Özer, A. Tümen F. Heavy metal pollution, potential of zinc leach residues discarded in Çinkur plant.
  • Espiari S, Rashchi F, Sadrnezhaad SK. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 2006;82:54–62.
  • Youcai Z, Stanforth R. Extraction of zinc from zinc ferrites by fusion with caustic soda. Miner Eng 2000;13:1417–21.
  • Raghavan R, Mohanan P., Swarnkar S. Hydrometallurgical processing of lead-bearing materials for the recovery of lead and silver as lead concentrate and lead metal. Hydrometallurgy 2000;58:103–16.
  • Miller RD. Book Review: Is Industrial Chemistry Still Presentable in Encyclopedic Form?: Ullmann’s Encyclopedia of Industrial Chemistry. 5th completely revised edition. Edited by W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, and J. F. Rounsaville. Angew Chemie Int Ed English 1986;25:763–4.
  • Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; 2003.
  • Turan MD, Altundoğan HS, Tümen F. Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 2004;75:169–76.
  • Fattahi A, Rashchi F, Abkhoshk E. Reductive leaching of zinc, cobalt and manganese from zinc plant residue. Hydrometallurgy 2016;161:185–92.
  • Ashtari P, Pourghahramani P. Selective mechanochemical alkaline leaching of zinc from zinc plant residue. Hydrometallurgy 2015;156:165–72.
  • Swarnkar SR, Gupta BL, Sekharan RD. Iron control in zinc plant residue leach solution. Hydrometallurgy 1996;42:21–6.
  • NÚñez C, Viñals J. Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions. Metall Trans B 1984;15:221–8.
  • Elgersma F, Kamst GF, Witkamp GJ, van Rosmalen GM. Acidic dissolution of zinc ferrite. Hydrometallurgy 1992;29:173–89.
  • Elgersma F, Witkamp GJ, van Rosmalen GM. Kinetics and mechanism of reductive dissolution of zinc ferrite in H2O and D2O. Hydrometallurgy 1993;33:165–76.
  • Langová Š, Leško J, Matýsek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 2009;95:179–82.
  • Xie F, Li H, Ma Y, Li C, Cai T, Huang Z, et al. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation. J Hazard Mater 2009;170:430–5.
  • Abo Atia T, Spooren J. Microwave assisted chloride leaching of zinc plant residues. J Hazard Mater 2020;398:122814.
  • Xin W, Srinivasakannan C, Xin-hui D, Jin-hui P, Da-jin Y, Shao-hua J. Leaching kinetics of zinc residues augmented with ultrasound. Sep Purif Technol 2013;115:66–72.
  • Wang Y, Jiang K, Ma H, Qin S, Zheng C. The Behavior of Zinc and Iron in Neutralized Residue During Pressure Leaching. Mining, Metall Explor 2022;39:847–54.
  • Faraji F, Golmohammadzadeh R, Sharifidarabad H, Rashchi F. An investigation of bioleaching and valorization of hazardous zinc plant purification residue using Aspergillus niger. Int J Environ Sci Technol 2023;20:8785–98.
  • Turan MD, Altundoğan HS, Boyrazlı M, Sarı ZA, Nizamoğlu H, Demiraslan A. Basic Leaching Behavior of Mechanically Activated Zinc Plant Residue. Trans Indian Inst Met 2019;72:2359–64.
  • Yildirim, H., Ateş, M., Turan, M. D., Sarı, Z. A., Nizamoğlu, H., & Cam A. Selective Iron Dissolution from Zinc Plant Residue. J Mater Electron DEVICES 2020;4:8–10.
  • Jha M., Kumar V, Singh R. Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 2001;33:1–22.
  • Viñals J, Núñez C, Herreros O. Kinetics of the aqueous chlorination of gold in suspended particles. Hydrometallurgy 1995;38:125–47.
  • Li Q, Zhang B, Min X, Shen W. Acid leaching kinetics of zinc plant purification residue. Trans Nonferrous Met Soc China 2013;23:2786–91.
  • Altundogan HS, Boyrazli M, Tumen F. A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Miner Eng 2004;17:465–7.
  • Rashid K. Nadirov LAM. Copper Smelter Slag Leachıng by Usıng H2SO4 in the Presence of Dichromate. J Chem Technol Metall 2019;54:657–62.
  • Olazabal MA, Nikolaidis NP, Suib SA. Madariaga JM. Precipitation Equilibria of the Chromium(VI)/Iron(III) System and Spectrospcopic Characterization of the Precipitates. Environ Sci Technol 1997;31:2898–902.
  • Baron D, Palmer CD, Stanley JT. Identification of Two Iron− Chromate Precipitates in a Cr(VI)-Contaminated Soil. Environ Sci Technol 1996;30:964–8.
  • Mussapyrova L, Nadirov R, Baláž P, Rajňák M, Bureš R, Baláž M. Selective room-temperature leaching of copper from mechanically activated copper smelter slag. J Mater Res Technol 2021;12:2011–25.
  • Kapoor ML. Production of zinc chemicals from secondary zinc. ILZIC Q 1994;2:57–60.
  • Souza AD, Pina PS, Lima EVO, da Silva CA, Leão VA. Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 2007;89:337–45.
  • Rüşen A, Topçu MA. Investigation of zinc extraction from different leach residues by acid leaching. Int J Environ Sci Technol 2018;15:69–80.
  • Hollagh ARE, Alamdari EK, Moradkhani D, Salardini AA. Kinetic Analysis of Isothermal Leaching of Zinc from Zinc Plant Residue. Int J Nonferrous Metall 2013;02:10–20.
  • Eremin K, Stenger J, Khandekar N, Huang JF, Betley T, Aspuru-Guzik A, et al. Materials and Techniques of Thai Painting. MRS Proc 2007;1047:1047-Y06-04.
  • Burrafato G, Calabrese M, Cosentino A, Gueli AM, Troja SO, Zuccarello A. ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J Raman Spectrosc 2004;35:879–86.
  • Sari ZA, Turan MD. Investigation of atmospheric pressure leaching conditions and leaching kinetics in the obtaining of industrial copper (II) acetate solution from copper slags. J Cent South Univ 2023;30:2556–73.

Production of Anti-Corrosive Industrial Zinc Chromate Complex Solution from Zinc Extraction Residue

Yıl 2024, Cilt: 36 Sayı: 1, 211 - 220, 28.03.2024
https://doi.org/10.35234/fumbd.1385153

Öz

Zinc plant residues contain significant amounts of zinc, lead, and other metal compounds, thus they are considered as a secondary source of metals. In this study, an attempt was made to produce industrial anti-corrosive zinc chromate complex solution (Zn(CrO4)2-) under optimum conditions by selectively leaching the zinc plant residue under various parameters in the presence of sulfuric acid and potassium dichromate. For this purpose, leaching experiments were carried out in 100 ml glass flaks using a flaks heater device with multiple magnetic stirrers. According to the results obtained, it was determined that zinc recovery increased with increasing leaching temperature, while iron, which reduced selectivity, dissolved to a limited extent. As optimum conditions, 0.5 M H2SO4 concentration, 0.5 M K2Cr2O7 concentration, 368 K leaching temperature, 180 min leaching time, 25 mL/g liquid-solid ratio and 600 rpm stirring speed, Zn and Fe extraction efficiencies were determined as 81.5% and 5.3%, respectively. On the other hand, in the Raman spectroscopy analysis performed to reveal the presence of zinc chromate complex in the leach solution, it was determined that Zn2+ ions were in coordination with chromate (CrO42-). The coordination number calculated by Raman spectroscopy turned out to be 3.6, which reveals the presence of Zn(CrO4)2- in solution. In addition, it was determined that under optimum conditions, Pb did not dissolve at all and remained in the form of sulfates and/or partially chromates in the leach residue.

Kaynakça

  • de Souza AD, Pina PS, Leão VA. Bioleaching and chemical leaching as an integrated process in the zinc industry. Miner Eng 2007;20:591–9.
  • Altundogan, H.S.; Erdem, M.; Orhan, R.; Özer, A. Tümen F. Heavy metal pollution, potential of zinc leach residues discarded in Çinkur plant.
  • Espiari S, Rashchi F, Sadrnezhaad SK. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 2006;82:54–62.
  • Youcai Z, Stanforth R. Extraction of zinc from zinc ferrites by fusion with caustic soda. Miner Eng 2000;13:1417–21.
  • Raghavan R, Mohanan P., Swarnkar S. Hydrometallurgical processing of lead-bearing materials for the recovery of lead and silver as lead concentrate and lead metal. Hydrometallurgy 2000;58:103–16.
  • Miller RD. Book Review: Is Industrial Chemistry Still Presentable in Encyclopedic Form?: Ullmann’s Encyclopedia of Industrial Chemistry. 5th completely revised edition. Edited by W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, and J. F. Rounsaville. Angew Chemie Int Ed English 1986;25:763–4.
  • Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; 2003.
  • Turan MD, Altundoğan HS, Tümen F. Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 2004;75:169–76.
  • Fattahi A, Rashchi F, Abkhoshk E. Reductive leaching of zinc, cobalt and manganese from zinc plant residue. Hydrometallurgy 2016;161:185–92.
  • Ashtari P, Pourghahramani P. Selective mechanochemical alkaline leaching of zinc from zinc plant residue. Hydrometallurgy 2015;156:165–72.
  • Swarnkar SR, Gupta BL, Sekharan RD. Iron control in zinc plant residue leach solution. Hydrometallurgy 1996;42:21–6.
  • NÚñez C, Viñals J. Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions. Metall Trans B 1984;15:221–8.
  • Elgersma F, Kamst GF, Witkamp GJ, van Rosmalen GM. Acidic dissolution of zinc ferrite. Hydrometallurgy 1992;29:173–89.
  • Elgersma F, Witkamp GJ, van Rosmalen GM. Kinetics and mechanism of reductive dissolution of zinc ferrite in H2O and D2O. Hydrometallurgy 1993;33:165–76.
  • Langová Š, Leško J, Matýsek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 2009;95:179–82.
  • Xie F, Li H, Ma Y, Li C, Cai T, Huang Z, et al. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation. J Hazard Mater 2009;170:430–5.
  • Abo Atia T, Spooren J. Microwave assisted chloride leaching of zinc plant residues. J Hazard Mater 2020;398:122814.
  • Xin W, Srinivasakannan C, Xin-hui D, Jin-hui P, Da-jin Y, Shao-hua J. Leaching kinetics of zinc residues augmented with ultrasound. Sep Purif Technol 2013;115:66–72.
  • Wang Y, Jiang K, Ma H, Qin S, Zheng C. The Behavior of Zinc and Iron in Neutralized Residue During Pressure Leaching. Mining, Metall Explor 2022;39:847–54.
  • Faraji F, Golmohammadzadeh R, Sharifidarabad H, Rashchi F. An investigation of bioleaching and valorization of hazardous zinc plant purification residue using Aspergillus niger. Int J Environ Sci Technol 2023;20:8785–98.
  • Turan MD, Altundoğan HS, Boyrazlı M, Sarı ZA, Nizamoğlu H, Demiraslan A. Basic Leaching Behavior of Mechanically Activated Zinc Plant Residue. Trans Indian Inst Met 2019;72:2359–64.
  • Yildirim, H., Ateş, M., Turan, M. D., Sarı, Z. A., Nizamoğlu, H., & Cam A. Selective Iron Dissolution from Zinc Plant Residue. J Mater Electron DEVICES 2020;4:8–10.
  • Jha M., Kumar V, Singh R. Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 2001;33:1–22.
  • Viñals J, Núñez C, Herreros O. Kinetics of the aqueous chlorination of gold in suspended particles. Hydrometallurgy 1995;38:125–47.
  • Li Q, Zhang B, Min X, Shen W. Acid leaching kinetics of zinc plant purification residue. Trans Nonferrous Met Soc China 2013;23:2786–91.
  • Altundogan HS, Boyrazli M, Tumen F. A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Miner Eng 2004;17:465–7.
  • Rashid K. Nadirov LAM. Copper Smelter Slag Leachıng by Usıng H2SO4 in the Presence of Dichromate. J Chem Technol Metall 2019;54:657–62.
  • Olazabal MA, Nikolaidis NP, Suib SA. Madariaga JM. Precipitation Equilibria of the Chromium(VI)/Iron(III) System and Spectrospcopic Characterization of the Precipitates. Environ Sci Technol 1997;31:2898–902.
  • Baron D, Palmer CD, Stanley JT. Identification of Two Iron− Chromate Precipitates in a Cr(VI)-Contaminated Soil. Environ Sci Technol 1996;30:964–8.
  • Mussapyrova L, Nadirov R, Baláž P, Rajňák M, Bureš R, Baláž M. Selective room-temperature leaching of copper from mechanically activated copper smelter slag. J Mater Res Technol 2021;12:2011–25.
  • Kapoor ML. Production of zinc chemicals from secondary zinc. ILZIC Q 1994;2:57–60.
  • Souza AD, Pina PS, Lima EVO, da Silva CA, Leão VA. Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 2007;89:337–45.
  • Rüşen A, Topçu MA. Investigation of zinc extraction from different leach residues by acid leaching. Int J Environ Sci Technol 2018;15:69–80.
  • Hollagh ARE, Alamdari EK, Moradkhani D, Salardini AA. Kinetic Analysis of Isothermal Leaching of Zinc from Zinc Plant Residue. Int J Nonferrous Metall 2013;02:10–20.
  • Eremin K, Stenger J, Khandekar N, Huang JF, Betley T, Aspuru-Guzik A, et al. Materials and Techniques of Thai Painting. MRS Proc 2007;1047:1047-Y06-04.
  • Burrafato G, Calabrese M, Cosentino A, Gueli AM, Troja SO, Zuccarello A. ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J Raman Spectrosc 2004;35:879–86.
  • Sari ZA, Turan MD. Investigation of atmospheric pressure leaching conditions and leaching kinetics in the obtaining of industrial copper (II) acetate solution from copper slags. J Cent South Univ 2023;30:2556–73.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrometalurji
Bölüm MBD
Yazarlar

Zeynel Abidin Sarı 0000-0001-5932-2141

M. Deniz Turan 0000-0002-2136-1425

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 2 Kasım 2023
Kabul Tarihi 19 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 1

Kaynak Göster

APA Sarı, Z. A., & Turan, M. D. (2024). Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 211-220. https://doi.org/10.35234/fumbd.1385153
AMA Sarı ZA, Turan MD. Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2024;36(1):211-220. doi:10.35234/fumbd.1385153
Chicago Sarı, Zeynel Abidin, ve M. Deniz Turan. “Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 1 (Mart 2024): 211-20. https://doi.org/10.35234/fumbd.1385153.
EndNote Sarı ZA, Turan MD (01 Mart 2024) Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 1 211–220.
IEEE Z. A. Sarı ve M. D. Turan, “Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, ss. 211–220, 2024, doi: 10.35234/fumbd.1385153.
ISNAD Sarı, Zeynel Abidin - Turan, M. Deniz. “Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/1 (Mart 2024), 211-220. https://doi.org/10.35234/fumbd.1385153.
JAMA Sarı ZA, Turan MD. Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:211–220.
MLA Sarı, Zeynel Abidin ve M. Deniz Turan. “Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, 2024, ss. 211-20, doi:10.35234/fumbd.1385153.
Vancouver Sarı ZA, Turan MD. Çinko Ekstraksiyon Artığından Korozyon Önleyici (Antikorozif) Endüstriyel Çinko Kromat Kompleks Çözeltisi Üretimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(1):211-20.