Araştırma Makalesi
BibTex RIS Kaynak Göster

Patella caerulea Kalsine Kabuklarının Mikrodalga Uygulamaları İçin Derinlemesine Analizi

Yıl 2025, Cilt: 37 Sayı: 1, 341 - 350, 27.03.2025
https://doi.org/10.35234/fumbd.1557122

Öz

Bu çalışma, İskenderun Körfezi’nden toplanan Patella Caerulea kabuklarının mikrodalga radomelarında biyomalzeme olarak potansiyel uygulamasını araştırmakta ve 600-1200 °C’de kalsine edilmiş kabukların dielektrik özelliklerini incelemektedir. 10 GHz’lik merkezi frekansta, P600, P800, P1000 ve P1200 için reel dielektrik geçirgenlik değerleri sırasıyla 3,2, 2,3, 2,4 ve 2,5’tir. 10 GHz’de karşılık gelen sanal değerleri, sıcaklığa bağlı değişimleri yansıtan 0,82, 0,44, 0,52 ve 0,56’dır. Kabukların, özellikle 2,5 GHz’deki kayıp faktörü, mikrodalga laminat ve radome uygulamaları gibi iletişimde düşük kayıplı uygulamalar için potansiyellerini göstermektedir. Ayrıca, bu malzemeler bir mikrodalga sistemde alt tabaka olarak uygulanabilirliğini göstermek için geleneksel bir yama antene entegre edilmiştir. Bununla birlikte, 800 °C’yi aşan sıcaklıklarda X-ışını kırınım spektrumunda CaO tepelerinde hafif bir artış gözlemlenmiştir. Kabuk tozunun termal gravimetrik analizi ve diferansiyel termal analizi, iki ayrı aşamada oluşan ağırlık kaybını ve 125 °C ve 275 °C’de küçük endotermik tepeleri ortaya koymaktadır. Çalışma, mikrodalga anten radom malzemelerinin yüksek empedans uyumu ve düşük kayıp özellikleri nedeniyle umut verici olduğunu vurgulamaktadır. Bu araştırma, mikrodalga teknolojisi alanında ekonomik ve ekolojik faydalar için deniz kaynaklı malzemelerin keşfine katkıda bulunmaktadır.

Kaynakça

  • Casal G, Aceña-Matarranz S, Fernández-Márquez D, Fernández N. Distribution and abundance patterns of three coexisting species of Patella (Mollusca Gastropoda) in the intertidal areas of the NW Iberian Peninsula: Implications for management, Fish Res 2018; 198: 86–98.
  • Jenkins S, Coleman R, Burrows M, Hartnoll RG, Hawkins S. Regional scale differences in determinism of limpet grazing effects, Mar Ecol Prog Ser 2005; 287: 77–86.
  • Prusina I, Peharda M, Ezgeta-Balic D, Puljas S, Glamuzina B, Golubic S. Life-history trait of the Mediterranean keystone species Patella rustica: growth and microbial bioerosion, Medit Mar Sci 2015; 16: 393.
  • Hawkins SJ, Hartnoll RG, Grazing of intertidal algae by marine invertebrates, Oceanogr Mar Biol 1983; 21: 195–282.
  • Arrontes J, Arenas F, Fernández C, J Rico, Oliveros J, Martínez B, Viejo R, Alvarez D. Effect of grazing by limpets on mid-shore species assemblages in northern Spain, Mar Ecol Prog Ser 2004; 277: 117–133.
  • Moore P, Thompson RC, Hawkins SJ. Effects of grazer identity on the probability of escapes by a canopy-forming macroalga, J Experimen Mar Biol Ecol, 2007; 344: 170–180.
  • Parpagnoli D, Pecchioli S, Santini G. Temporal determinants of grazing activity in the Mediterranean limpet Patella caerulea, Ethol Ecol Evol, 2013; 25: 388–399.
  • Mauro A, Arculeo M, Parrinello N. Morphological and molecular tools in identifying the Mediterranean limpets Patella caerulea, Patella aspera and Patella rustica, J Experimen Mar Biol Ecol 2003; 295: 131–143.
  • Bouzaza Z, Mezali K. Discriminant-based study of the shell morphometric relationships of Patella caerulea (Gastropoda: Prosobranchia) of the western Mediterranean Sea, Turk J Zool 2018; 42: 513–522.
  • Vafidis D, Drosou I, Demetriou K, Klaoudatos D. Population Characteristics of the Limpet Patella caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece), Water 2020; 12: 1186.
  • Navarro PG, Ramírez R, Tuya F, Fernandez-gil C, Sanchez-jerez P, Haroun RJ. Hierarchical Analysis Of Spatial Distribution Patterns Of Patellid Limpets In The Canary Islands, J Mollusc Stud 2005; 71: 67–73.
  • Espinosa F, Guerra-García JM, Fa D, García-Gómez JC. Effects of competition on an endangered limpet Patella ferruginea (Gastropoda: Patellidae): Implications for conservation, J Experimen Mar Biol Ecol 2006; 330: 482–492.
  • Paulo Cabral J. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival, Web Ecol 2007; 7: 11–21.
  • Prusina I, Ezgeta-Balić D, Ljubimir S, Dobroslavić T, Glamuzina B. On the reproduction of the Mediterranean keystone limpet Patella rustica : histological overview, J Mar Biol Ass 2014; 94: 1651–1660.
  • Duysak Ö, Azdural K. Evaluation of heavy metal and aluminium accumulation in a gastropod, patella caerulea L., 1758 in Iskenderun Bay, Turkey, Pak J Zool 2017; 49: 629–637.
  • Küçükdermenci A, Lök A, Kirtik A, Kurtay E. The meat yield variations of Patella caerulea (Linnaeus, 1758) in Urla, Izmir Bay, Acta Biol Tur 2017; 30: 174–177.
  • Yücel N, Kılıç E. Presence of microplastic in the Patella caerulea from the northeastern Mediterranean Sea, Mar Poll Bull 2023; 188: 114684.
  • Uğurlu E. Using Patella caerulea as a biomaterial: Chitin and Chitosan, AUJES 2023; 4: 394–405.
  • Uğurlu E, Duysak Ö, Alkurt FÖ, Karaaslan M, Franco AP. Utilization of Poisonous Marine invader in Development of Low Losses Microwave Devices, NÖHÜ Müh Bilim Derg 2023; 12: 1335–1340.
  • Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems, Carbohydr Res 2024; 538: 109071.
  • Shavit R. Radome electromagnetic theory and design, John Wiley & Sons, 2018.
  • Panwar R, Lee JR. Performance and non-destructive evaluation methods of airborne radome and stealth structures, Meas Sci Technol 2018; 29: 062001.
  • Gorgucci E, Bechini R, Baldini L, Cremonini R, Chandrasekar V. The Influence of Antenna Radome on Weather Radar Calibration and Its Real-Time Assessment, J Atmos Ocean Tech 2013; 30: 676–689.
  • Yu J, Zhang K, Duan M, Lv W, Zhang X. Study on the stability of air traffic control radar radome under wind Load, IEEE, 2023: 1152–1155.
  • Xing Z, Yang F, Yang J, Zhu X. Low-RCS Ka-band receiving and transmitting satellite communication antennas co-designed with high-performance absorbent frequency-selective radomes, J Electromagn Waves Appl 2023; 37: 190–206.
  • Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM. Removal of heavy metals using waste eggshell, J Environ Sci 2007; 19: 1436–1441.
  • Öksüz KE. Sert Doku Uygulamaları İçin Makro Gözenekli Alüminyum Oksit-Bor Karbür Seramikleri, RTEUFEMUD 2023; 4: 65–75.
  • Kaatze U. Techniques for measuring the microwave dielectric properties of materials, Metrologia 2010; 47: S91–S113.
  • Gabriel C, Gabriel S, Grant EH, Grant EH, Halstead BSJ, Michael D, Mingos P. Dielectric parameters relevant to microwave dielectric heating, Chem Soc Rev 1998; 27: 213.
  • Öksüz KE, Şerefli̇şan H. Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods, J Agricul Product 2022; 3: 42–47.
  • Ferraz E, Gamelas JAF, Coroado J, Monteiro C, Rocha F. Recycling Waste Seashells to Produce Calcitic Lime: Characterization and Wet Slaking Reactivity, Waste Biomass Valor 2019; 10: 2397–2414.
  • Soisuwan S, Phommachant J, Wisaijorn W, Praserthdam P. The Characteristics of Green Calcium Oxide Derived from Aquatic Materials, Procedia Chem 2024; 9: 53–61.
  • Park K, Sadeghi K, Thanakkasaranee S, Park Y, Park J, Nam K, Han H, Seo J. Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent, Int J Applied Ceramic Tech 2021; 18: 302–311.
  • Habib Ullah M, Mahadi WNL, Latef TA. Aerogel Poly (butylene succinate) Biomaterial Substrate for RF and Microwave Applications, Sci Rep 2015; 5: 12868.
  • Zulkifli NA, Wee FH, Mahrom N, Yew BS, Lee YS, Ibrahim SZ, Am Phan AL. Analysis of Dielectric Properties On Agricultural Waste for Microwave Communication Application, MATEC Web Conf 2017; 140: 01013.
  • Sekar V, Torke WJ, Palermo S, Entesari K. A Self-Sustained Microwave System for Dielectric-Constant Measurement of Lossy Organic Liquids, IEEE Trans. Microwave Theory Techn 2012; 60: 1444–1455.
  • Zarubina AY, Kibets SG, Politiko AA, Semenenko VN, Baskov KM, Chistyaev VA. Complex permittivity of organic solvents at microwave frequencies, in: IOP Publishing, 2020: p. 062085.
  • Marland S, Merchant A, Rowson N. Dielectric properties of coal, Fuel 2001; 80: 1839–1849.
  • Hernandez-Gomez ES, Olvera-Cervantes JL, Corona-Chavez A, Sosa-Morales ME. Development of a low cost dielectric permittivity sensor for organic and inorganic materials in the microwave frequency range, in: 2014 IEEE 9th IberoAmerican Congress on Sensors, IEEE, Bogota, Colombia, 2014: pp. 1–4.
  • Baltacioğlu K, Başar M, Karaaslan M, Alkurt F, Aripek S, Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures, Eur Mech Sci 2021; 5: 148–152.

Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications

Yıl 2025, Cilt: 37 Sayı: 1, 341 - 350, 27.03.2025
https://doi.org/10.35234/fumbd.1557122

Öz

This study investigates the potential application of Patella caerulea shells collected from the Iskenderun Bay as biomaterial in microwave radomes and examines the dielectric properties of shells calcined at 600-1200 °C. At the central frequency of 10 GHz, the real permittivity values for P600, P800, P1000 and P1200 are 3.2, 2.3, 2.4 and 2.5, respectively. The corresponding imaginary parts at 10 GHz are 0.82, 0.44, 0.52 and 0.56, reflecting temperature-dependent variations. The loss factor of shells, particularly at 2.5 GHz, indicates their potential for low-loss applications in communication, such as microwave laminate and radome applications. Moreover, these materials have been integrated to a traditional patch antenna to show feasibility in a microwave system as a substrate layer. At temperatures exceeding 800 °C, slight increase in the CaO peaks was observed in X-ray diffraction spectrum. The thermal gravimetric analysis and differential thermal analysis of shell powder reveal weight loss occurring in two distinct stages and minor endothermic peaks at 125°C and 275°C. The study highlights that microwave antenna radome materials are promising due to their high impedance matching and low-loss properties. This research contributes to the exploration of marine-sourced materials for economic and ecological benefits in the field of microwave technology.

Kaynakça

  • Casal G, Aceña-Matarranz S, Fernández-Márquez D, Fernández N. Distribution and abundance patterns of three coexisting species of Patella (Mollusca Gastropoda) in the intertidal areas of the NW Iberian Peninsula: Implications for management, Fish Res 2018; 198: 86–98.
  • Jenkins S, Coleman R, Burrows M, Hartnoll RG, Hawkins S. Regional scale differences in determinism of limpet grazing effects, Mar Ecol Prog Ser 2005; 287: 77–86.
  • Prusina I, Peharda M, Ezgeta-Balic D, Puljas S, Glamuzina B, Golubic S. Life-history trait of the Mediterranean keystone species Patella rustica: growth and microbial bioerosion, Medit Mar Sci 2015; 16: 393.
  • Hawkins SJ, Hartnoll RG, Grazing of intertidal algae by marine invertebrates, Oceanogr Mar Biol 1983; 21: 195–282.
  • Arrontes J, Arenas F, Fernández C, J Rico, Oliveros J, Martínez B, Viejo R, Alvarez D. Effect of grazing by limpets on mid-shore species assemblages in northern Spain, Mar Ecol Prog Ser 2004; 277: 117–133.
  • Moore P, Thompson RC, Hawkins SJ. Effects of grazer identity on the probability of escapes by a canopy-forming macroalga, J Experimen Mar Biol Ecol, 2007; 344: 170–180.
  • Parpagnoli D, Pecchioli S, Santini G. Temporal determinants of grazing activity in the Mediterranean limpet Patella caerulea, Ethol Ecol Evol, 2013; 25: 388–399.
  • Mauro A, Arculeo M, Parrinello N. Morphological and molecular tools in identifying the Mediterranean limpets Patella caerulea, Patella aspera and Patella rustica, J Experimen Mar Biol Ecol 2003; 295: 131–143.
  • Bouzaza Z, Mezali K. Discriminant-based study of the shell morphometric relationships of Patella caerulea (Gastropoda: Prosobranchia) of the western Mediterranean Sea, Turk J Zool 2018; 42: 513–522.
  • Vafidis D, Drosou I, Demetriou K, Klaoudatos D. Population Characteristics of the Limpet Patella caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece), Water 2020; 12: 1186.
  • Navarro PG, Ramírez R, Tuya F, Fernandez-gil C, Sanchez-jerez P, Haroun RJ. Hierarchical Analysis Of Spatial Distribution Patterns Of Patellid Limpets In The Canary Islands, J Mollusc Stud 2005; 71: 67–73.
  • Espinosa F, Guerra-García JM, Fa D, García-Gómez JC. Effects of competition on an endangered limpet Patella ferruginea (Gastropoda: Patellidae): Implications for conservation, J Experimen Mar Biol Ecol 2006; 330: 482–492.
  • Paulo Cabral J. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival, Web Ecol 2007; 7: 11–21.
  • Prusina I, Ezgeta-Balić D, Ljubimir S, Dobroslavić T, Glamuzina B. On the reproduction of the Mediterranean keystone limpet Patella rustica : histological overview, J Mar Biol Ass 2014; 94: 1651–1660.
  • Duysak Ö, Azdural K. Evaluation of heavy metal and aluminium accumulation in a gastropod, patella caerulea L., 1758 in Iskenderun Bay, Turkey, Pak J Zool 2017; 49: 629–637.
  • Küçükdermenci A, Lök A, Kirtik A, Kurtay E. The meat yield variations of Patella caerulea (Linnaeus, 1758) in Urla, Izmir Bay, Acta Biol Tur 2017; 30: 174–177.
  • Yücel N, Kılıç E. Presence of microplastic in the Patella caerulea from the northeastern Mediterranean Sea, Mar Poll Bull 2023; 188: 114684.
  • Uğurlu E. Using Patella caerulea as a biomaterial: Chitin and Chitosan, AUJES 2023; 4: 394–405.
  • Uğurlu E, Duysak Ö, Alkurt FÖ, Karaaslan M, Franco AP. Utilization of Poisonous Marine invader in Development of Low Losses Microwave Devices, NÖHÜ Müh Bilim Derg 2023; 12: 1335–1340.
  • Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems, Carbohydr Res 2024; 538: 109071.
  • Shavit R. Radome electromagnetic theory and design, John Wiley & Sons, 2018.
  • Panwar R, Lee JR. Performance and non-destructive evaluation methods of airborne radome and stealth structures, Meas Sci Technol 2018; 29: 062001.
  • Gorgucci E, Bechini R, Baldini L, Cremonini R, Chandrasekar V. The Influence of Antenna Radome on Weather Radar Calibration and Its Real-Time Assessment, J Atmos Ocean Tech 2013; 30: 676–689.
  • Yu J, Zhang K, Duan M, Lv W, Zhang X. Study on the stability of air traffic control radar radome under wind Load, IEEE, 2023: 1152–1155.
  • Xing Z, Yang F, Yang J, Zhu X. Low-RCS Ka-band receiving and transmitting satellite communication antennas co-designed with high-performance absorbent frequency-selective radomes, J Electromagn Waves Appl 2023; 37: 190–206.
  • Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM. Removal of heavy metals using waste eggshell, J Environ Sci 2007; 19: 1436–1441.
  • Öksüz KE. Sert Doku Uygulamaları İçin Makro Gözenekli Alüminyum Oksit-Bor Karbür Seramikleri, RTEUFEMUD 2023; 4: 65–75.
  • Kaatze U. Techniques for measuring the microwave dielectric properties of materials, Metrologia 2010; 47: S91–S113.
  • Gabriel C, Gabriel S, Grant EH, Grant EH, Halstead BSJ, Michael D, Mingos P. Dielectric parameters relevant to microwave dielectric heating, Chem Soc Rev 1998; 27: 213.
  • Öksüz KE, Şerefli̇şan H. Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods, J Agricul Product 2022; 3: 42–47.
  • Ferraz E, Gamelas JAF, Coroado J, Monteiro C, Rocha F. Recycling Waste Seashells to Produce Calcitic Lime: Characterization and Wet Slaking Reactivity, Waste Biomass Valor 2019; 10: 2397–2414.
  • Soisuwan S, Phommachant J, Wisaijorn W, Praserthdam P. The Characteristics of Green Calcium Oxide Derived from Aquatic Materials, Procedia Chem 2024; 9: 53–61.
  • Park K, Sadeghi K, Thanakkasaranee S, Park Y, Park J, Nam K, Han H, Seo J. Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent, Int J Applied Ceramic Tech 2021; 18: 302–311.
  • Habib Ullah M, Mahadi WNL, Latef TA. Aerogel Poly (butylene succinate) Biomaterial Substrate for RF and Microwave Applications, Sci Rep 2015; 5: 12868.
  • Zulkifli NA, Wee FH, Mahrom N, Yew BS, Lee YS, Ibrahim SZ, Am Phan AL. Analysis of Dielectric Properties On Agricultural Waste for Microwave Communication Application, MATEC Web Conf 2017; 140: 01013.
  • Sekar V, Torke WJ, Palermo S, Entesari K. A Self-Sustained Microwave System for Dielectric-Constant Measurement of Lossy Organic Liquids, IEEE Trans. Microwave Theory Techn 2012; 60: 1444–1455.
  • Zarubina AY, Kibets SG, Politiko AA, Semenenko VN, Baskov KM, Chistyaev VA. Complex permittivity of organic solvents at microwave frequencies, in: IOP Publishing, 2020: p. 062085.
  • Marland S, Merchant A, Rowson N. Dielectric properties of coal, Fuel 2001; 80: 1839–1849.
  • Hernandez-Gomez ES, Olvera-Cervantes JL, Corona-Chavez A, Sosa-Morales ME. Development of a low cost dielectric permittivity sensor for organic and inorganic materials in the microwave frequency range, in: 2014 IEEE 9th IberoAmerican Congress on Sensors, IEEE, Bogota, Colombia, 2014: pp. 1–4.
  • Baltacioğlu K, Başar M, Karaaslan M, Alkurt F, Aripek S, Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures, Eur Mech Sci 2021; 5: 148–152.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği
Bölüm MBD
Yazarlar

Erkan Uğurlu 0000-0001-8940-8421

Muharrem Karaaslan 0000-0003-0923-1959

Fatih Özkan Alkurt 0000-0002-9940-0658

Kerim Emre Öksüz 0000-0001-7424-5930

Önder Duysak 0000-0002-7484-3102

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 27 Eylül 2024
Kabul Tarihi 12 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Uğurlu, E., Karaaslan, M., Alkurt, F. Ö., Öksüz, K. E., vd. (2025). Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 341-350. https://doi.org/10.35234/fumbd.1557122
AMA Uğurlu E, Karaaslan M, Alkurt FÖ, Öksüz KE, Duysak Ö. Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2025;37(1):341-350. doi:10.35234/fumbd.1557122
Chicago Uğurlu, Erkan, Muharrem Karaaslan, Fatih Özkan Alkurt, Kerim Emre Öksüz, ve Önder Duysak. “Deep Analysis of Patella Caerulea Calcined Shells for Microwave Applications”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 (Mart 2025): 341-50. https://doi.org/10.35234/fumbd.1557122.
EndNote Uğurlu E, Karaaslan M, Alkurt FÖ, Öksüz KE, Duysak Ö (01 Mart 2025) Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 341–350.
IEEE E. Uğurlu, M. Karaaslan, F. Ö. Alkurt, K. E. Öksüz, ve Ö. Duysak, “Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 341–350, 2025, doi: 10.35234/fumbd.1557122.
ISNAD Uğurlu, Erkan vd. “Deep Analysis of Patella Caerulea Calcined Shells for Microwave Applications”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (Mart 2025), 341-350. https://doi.org/10.35234/fumbd.1557122.
JAMA Uğurlu E, Karaaslan M, Alkurt FÖ, Öksüz KE, Duysak Ö. Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:341–350.
MLA Uğurlu, Erkan vd. “Deep Analysis of Patella Caerulea Calcined Shells for Microwave Applications”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 341-50, doi:10.35234/fumbd.1557122.
Vancouver Uğurlu E, Karaaslan M, Alkurt FÖ, Öksüz KE, Duysak Ö. Deep Analysis of Patella caerulea Calcined Shells for Microwave Applications. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(1):341-50.