Araştırma Makalesi
BibTex RIS Kaynak Göster

Klima Sistemlerinde Kurulum Hataları Etkilerine İlişkin Genel Değerlendirme ve Enerji Analizi

Yıl 2025, Cilt: 37 Sayı: 2, 543 - 555, 30.09.2025
https://doi.org/10.35234/fumbd.1555335

Öz

Bu çalışmada, ev tipi klima (AC) sistemlerinin yoğuşturucu bölümündeki montaj hataları araştırılmıştır. Konut binalarındaki AC sistemlerinin elektrik tüketimi sürekli artmakta ve önemli endişelere yol açmaktadır. Bu sistemlerin elektrik tüketimini ve emisyon değerlerini azaltmak için çok sayıda çalışma yürütülmüştür. Ancak, bu sistemlerin doğru bir şekilde kullanılıp kullanılmadığı ve kurulup kurulmadığı hala şüphelidir. Bu çalışmada, yoğuşturucu bölümündeki montaj hatalarının etkileri deneysel olarak araştırılmıştır. Bu hataların sistem performansı üzerindeki etkisini değerlendirmek için bir enerji analizi yapılmıştır. Bulgular, montaj hatalarının temel değerlere kıyasla %40 ila %60 arasında değişen bir elektrik tüketimi artışına neden olduğunu ortaya koymuştur. Ayrıca, bu hatalar nedeniyle AC sisteminin performans katsayısı (COP) %48,75 oranında düşmüştür. Ayrıca, Japonya, ABD ve Çin'deki AC sistemlerinin kullanımı göz önünde bulundurularak, yoğuşturucudaki montaj hatalarının neden olduğu gereksiz enerji tüketimini hesaplamak için gemel bir değerlendirme yapılmıştır. Sonuçlar, kurulum hatalarından kaynaklanan yıllık gereksiz enerji tüketiminin her ülke için 0,05 TWh ile 1,26 TWh arasında değiştiğini göstermiştir.

Destekleyen Kurum

Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP)

Proje Numarası

TEKF.22.07

Teşekkür

This study was produced from the master thesis titled “Investigation of the possible effects of incorrect montage of AC systems on the performance values of the system”. Authors thank to Fırat University Project Support Unit with the project number TEKF.22.07. The historical temperature data used in this study were obtained from the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program.

Kaynakça

  • Ni J, Bai X. A review of air conditioning energy performance in data centers. Renew Sustain Energy Rev 2017;67:625–40.
  • Yang C, Seo S, Takata N, Thu K, Miyazaki T. The life cycle climate performance evaluation of low-GWP refrigerants for domestic heat pumps. Int J Refrig 2021;121:33–42.
  • Guan B, Liu X, Zhang T. Analytical solutions for the optimal cooling and heating source temperatures in liquid desiccant air-conditioning system based on exergy analysis. Energy 2020;203:117860.
  • Ma Z, Ren H, Lin W. A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses. J Clean Prod 2019;240:118158.
  • Mahlia TMI, Saidur R. A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator-freezers. Renew Sustain Energy Rev 2010;14:1888–900.
  • Qi Z. Advances on air conditioning and heat pump system in electric vehicles - A review. Renew Sustain Energy Rev 2014;38:754–64.
  • Yu Y, You S, Zhang H, Ye T, Wang Y, Wei S. A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations. Renew Sustain Energy Rev 2021;141:110788.
  • Sadighi Dizaji H, Hu EJ, Chen L. A comprehensive review of the Maisotsenko-cycle based air conditioning systems. Energy 2018;156:725–49.
  • Gurubalan A, Simonson CJ. A comprehensive review of dehumidifiers and regenerators for liquid desiccant air conditioning system. Energy Convers Manag 2021;240:114234.
  • Gurubalan A, Maiya MP, Geoghegan PJ. A comprehensive review of liquid desiccant air conditioning system. Appl Energy 2019;254:113673.
  • Jani DB, Mishra M, Sahoo PK. Solid desiccant air conditioning - A state of the art review. Renew Sustain Energy Rev 2016;60:1451–69.
  • Fekadu G, Subudhi S. Renewable energy for liquid desiccants air conditioning system: A review. Renew Sustain Energy Rev 2018;93:364–79.
  • Gao DC, Sun YJ, Ma Z, Ren H. A review on integration and design of desiccant air-conditioning systems for overall performance improvements. Renew Sustain Energy Rev 2021;141.
  • Pasqualin P, Lefers R, Mahmoud S, Davies PA. Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses. Renew Sustain Energy Rev 2022;154:111815.
  • Chen X, Riffat S, Bai H, Zheng X, Reay D. Recent progress in liquid desiccant dehumidification and air-conditioning: A review. Energy Built Environ 2020;1:106–30.
  • She X, Cong L, Nie B, Leng G, Peng H, Chen Y, et al. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review. Appl Energy 2018;232:157–86.
  • Liu H, Yang H, Qi R. A review of electrically driven dehumidification technology for air-conditioning systems. Appl Energy 2020;279:115863.
  • Enteria N, Yoshino H, Mochida A. Review of the advances in open-cycle absorption air-conditioning systems. Renew Sustain Energy Rev 2013;28:265–89.
  • Wan H, Cao T, Hwang Y, Oh S. A review of recent advancements of variable refrigerant flow air-conditioning systems. Appl Therm Eng 2020;169:114893.
  • Yau YH, Ahmadzadehtalatapeh M. A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics. Appl Therm Eng 2010;30:77–84.
  • Spanish government to allow flexibility on air-conditioning, but rules out U-turn on decree. Spain in English 2022. https://www.spainenglish.com/2022/08/08/spanish-government-to-allow-flexibility-on-air-conditioning-but-rules-out-u-turn-on-decree/.
  • Mishra P, Soni S, Maheshwari G. Exergetic performance analysis of low GWP refrigerants as an alternative to R410A in split air conditioner. Mater Today Proc 2022;63:406–12.
  • Cui M, Wang B, Wei F, Shi W. A modified exergy analysis method for vapor compression systems: Splitting refrigerant exergy destruction. Appl Therm Eng 2022;201:117728.
  • Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng 1953;75:3–8.
  • Shah N, Park WY, Ding C. Trends in best-in-class energy-efficient technologies for room air conditioners. Energy Reports 2021;7:3162–70.
  • Rajan A, McKay IS, Yee SK. Continuous electrochemical refrigeration based on the Brayton cycle. Nat Energy 2022.
  • Ziya Sogut M. Exergetic and environmental assessment of room air conditioners in Turkish market. Energy 2012;46:32–41.
  • International Energy Agency (IEA). The Future of Cooling Opportunities for energy- efficient air conditioning <https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c 9c0cb5e7d525/The_Future_of_Cooling.pdf> 2018:92.
  • The International Energy Agency (ıea). Renewable 2017. n.d.
  • Winkler J, Das S, Earle L, Burkett L, Robertson J, Roberts D, et al. Impact of installation faults in air conditioners and heat pumps in single-family homes on U.S. energy usage. Appl Energy 2020;278:115533.
  • Hourahan GC, Baxter VD. Impact of Installation Faults on Heat Pump Performance. IEA Heat Pump Cent Newsl 2015;33:34–8.

General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems

Yıl 2025, Cilt: 37 Sayı: 2, 543 - 555, 30.09.2025
https://doi.org/10.35234/fumbd.1555335

Öz

In this study, the installation faults in the condenser section of household air conditioning (AC) systems were investigated. The electricity consumption of AC systems in residential buildings has been steadily increasing, raising significant concerns. Numerous studies have been conducted to reduce the electricity consumption and emission values of these systems. However, it remains questionable whether these systems are being used and installed correctly. This study experimentally investigated the effects of installation faults in the condenser section. An energy analysis was carried out to evaluate the impact of these faults on system performance. The findings revealed that installation faults caused an increase in electricity consumption ranging from 40% to 60% compared to the baseline values. Additionally, the coefficient of performance (COP) of the AC system decreased by 48.75% due to these faults. A general evaluation was also performed to calculate the unnecessary energy consumption caused by installation faults in the condenser, considering the use of AC systems in Japan, the USA, and China. The results indicated that the annual unnecessary energy consumption due to installation faults ranged from 0.05 TWh to 1.26 TWh for each country.

Proje Numarası

TEKF.22.07

Kaynakça

  • Ni J, Bai X. A review of air conditioning energy performance in data centers. Renew Sustain Energy Rev 2017;67:625–40.
  • Yang C, Seo S, Takata N, Thu K, Miyazaki T. The life cycle climate performance evaluation of low-GWP refrigerants for domestic heat pumps. Int J Refrig 2021;121:33–42.
  • Guan B, Liu X, Zhang T. Analytical solutions for the optimal cooling and heating source temperatures in liquid desiccant air-conditioning system based on exergy analysis. Energy 2020;203:117860.
  • Ma Z, Ren H, Lin W. A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses. J Clean Prod 2019;240:118158.
  • Mahlia TMI, Saidur R. A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator-freezers. Renew Sustain Energy Rev 2010;14:1888–900.
  • Qi Z. Advances on air conditioning and heat pump system in electric vehicles - A review. Renew Sustain Energy Rev 2014;38:754–64.
  • Yu Y, You S, Zhang H, Ye T, Wang Y, Wei S. A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations. Renew Sustain Energy Rev 2021;141:110788.
  • Sadighi Dizaji H, Hu EJ, Chen L. A comprehensive review of the Maisotsenko-cycle based air conditioning systems. Energy 2018;156:725–49.
  • Gurubalan A, Simonson CJ. A comprehensive review of dehumidifiers and regenerators for liquid desiccant air conditioning system. Energy Convers Manag 2021;240:114234.
  • Gurubalan A, Maiya MP, Geoghegan PJ. A comprehensive review of liquid desiccant air conditioning system. Appl Energy 2019;254:113673.
  • Jani DB, Mishra M, Sahoo PK. Solid desiccant air conditioning - A state of the art review. Renew Sustain Energy Rev 2016;60:1451–69.
  • Fekadu G, Subudhi S. Renewable energy for liquid desiccants air conditioning system: A review. Renew Sustain Energy Rev 2018;93:364–79.
  • Gao DC, Sun YJ, Ma Z, Ren H. A review on integration and design of desiccant air-conditioning systems for overall performance improvements. Renew Sustain Energy Rev 2021;141.
  • Pasqualin P, Lefers R, Mahmoud S, Davies PA. Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses. Renew Sustain Energy Rev 2022;154:111815.
  • Chen X, Riffat S, Bai H, Zheng X, Reay D. Recent progress in liquid desiccant dehumidification and air-conditioning: A review. Energy Built Environ 2020;1:106–30.
  • She X, Cong L, Nie B, Leng G, Peng H, Chen Y, et al. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review. Appl Energy 2018;232:157–86.
  • Liu H, Yang H, Qi R. A review of electrically driven dehumidification technology for air-conditioning systems. Appl Energy 2020;279:115863.
  • Enteria N, Yoshino H, Mochida A. Review of the advances in open-cycle absorption air-conditioning systems. Renew Sustain Energy Rev 2013;28:265–89.
  • Wan H, Cao T, Hwang Y, Oh S. A review of recent advancements of variable refrigerant flow air-conditioning systems. Appl Therm Eng 2020;169:114893.
  • Yau YH, Ahmadzadehtalatapeh M. A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics. Appl Therm Eng 2010;30:77–84.
  • Spanish government to allow flexibility on air-conditioning, but rules out U-turn on decree. Spain in English 2022. https://www.spainenglish.com/2022/08/08/spanish-government-to-allow-flexibility-on-air-conditioning-but-rules-out-u-turn-on-decree/.
  • Mishra P, Soni S, Maheshwari G. Exergetic performance analysis of low GWP refrigerants as an alternative to R410A in split air conditioner. Mater Today Proc 2022;63:406–12.
  • Cui M, Wang B, Wei F, Shi W. A modified exergy analysis method for vapor compression systems: Splitting refrigerant exergy destruction. Appl Therm Eng 2022;201:117728.
  • Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng 1953;75:3–8.
  • Shah N, Park WY, Ding C. Trends in best-in-class energy-efficient technologies for room air conditioners. Energy Reports 2021;7:3162–70.
  • Rajan A, McKay IS, Yee SK. Continuous electrochemical refrigeration based on the Brayton cycle. Nat Energy 2022.
  • Ziya Sogut M. Exergetic and environmental assessment of room air conditioners in Turkish market. Energy 2012;46:32–41.
  • International Energy Agency (IEA). The Future of Cooling Opportunities for energy- efficient air conditioning <https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c 9c0cb5e7d525/The_Future_of_Cooling.pdf> 2018:92.
  • The International Energy Agency (ıea). Renewable 2017. n.d.
  • Winkler J, Das S, Earle L, Burkett L, Robertson J, Roberts D, et al. Impact of installation faults in air conditioners and heat pumps in single-family homes on U.S. energy usage. Appl Energy 2020;278:115533.
  • Hourahan GC, Baxter VD. Impact of Installation Faults on Heat Pump Performance. IEA Heat Pump Cent Newsl 2015;33:34–8.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Araştırma Makalesi
Yazarlar

Ruveyda Ergen 0000-0001-7909-7770

Mert Gürtürk 0000-0003-0380-5704

Proje Numarası TEKF.22.07
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 24 Eylül 2024
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 2

Kaynak Göster

APA Ergen, R., & Gürtürk, M. (2025). General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(2), 543-555. https://doi.org/10.35234/fumbd.1555335
AMA Ergen R, Gürtürk M. General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2025;37(2):543-555. doi:10.35234/fumbd.1555335
Chicago Ergen, Ruveyda, ve Mert Gürtürk. “General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 2 (Eylül 2025): 543-55. https://doi.org/10.35234/fumbd.1555335.
EndNote Ergen R, Gürtürk M (01 Eylül 2025) General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 2 543–555.
IEEE R. Ergen ve M. Gürtürk, “General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, ss. 543–555, 2025, doi: 10.35234/fumbd.1555335.
ISNAD Ergen, Ruveyda - Gürtürk, Mert. “General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/2 (Eylül2025), 543-555. https://doi.org/10.35234/fumbd.1555335.
JAMA Ergen R, Gürtürk M. General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:543–555.
MLA Ergen, Ruveyda ve Mert Gürtürk. “General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, 2025, ss. 543-55, doi:10.35234/fumbd.1555335.
Vancouver Ergen R, Gürtürk M. General Evaluation and Energy Analysis on the Effects of Installation Faults in Air Conditioning Systems. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(2):543-55.