Araştırma Makalesi
BibTex RIS Kaynak Göster

FFF Teknolojisi ile Üretilen ABS Malzemenin Mekanik Performansı ve Kırılma Davranışı Üzerinde Raster Açısı ve Baskı Hızının Etkisinin Deneysel Olarak İncelenmesi

Yıl 2025, Cilt: 37 Sayı: 2, 737 - 746, 30.09.2025
https://doi.org/10.35234/fumbd.1700589

Öz

Son yıllarda polimer malzeme teknolojilerinde yaşanan gelişmeler, bu malzemelerin mühendislik uygulamalarındaki kullanımını önemli ölçüde artırmıştır. Bu kapsamda, akrilonitril bütadien stiren (ABS), hafifliği, düşük maliyeti, sürdürülebilirliği ve yüksek mekanik dayanımı nedeniyle otomotiv, elektronik, sağlık ve yapı gibi birçok endüstride yaygın olarak tercih edilen bir termoplastik olmuştur. Geleneksel üretim yöntemleriyle birlikte, eklemeli imalat teknolojilerinde sağlanan ilerlemeler, ABS gibi polimerlerin üretiminde yeni olanaklar sunmakta ve üretim sürecinin parametrelerinin nihai ürün performansı üzerindeki etkisini gündeme getirmektedir. Literatürde yapılan çalışmalar, özellikle baskı hızı ve raster açısı gibi üretim parametrelerinin, mekanik özellikler üzerinde belirleyici bir rol oynadığını göstermektedir. Bu çalışmada, FFF yöntemiyle ABS malzemesinden üretilen numunelerin mekanik performansı üzerinde baskı hızı (60, 70 ve 80 mm/sn) ile raster açısı (±45° ve 0–90°) değişkenlerinin etkisi incelenmiştir. Çekme testleri sonucunda, 60 mm/sn baskı hızında ±45° ve 0–90° raster açıları için sırasıyla 36,26 MPa ve 31,77 MPa çekme dayanımı elde edilmiştir. Charpy darbe testleri sonuçları, baskı hızının artışıyla darbe dayanımının yükseldiğini ortaya koymuş; ±45° raster açısında 53,88 kJ/m², 0–90° raster açısında ise 40,69 kJ/m² darbe dayanımı ölçülmüştür. SEM analizleri, baskı hızındaki artışla birlikte katmanlar arası boşlukların arttığını ve bunun çekme dayanımında düşüşe neden olduğunu göstermiştir. Elde edilen bulgular, optimum üretim parametrelerinin seçiminin, ABS numunelerin mekanik performansını artırmada kritik rol oynadığını ortaya koymaktadır. Sonuç olarak, baskı açısı ve hızının ABS malzemenin mekanik performansını doğrudan etkilediği ve bu parametrelerin optimizasyonunun kritik öneme sahip olduğu ortaya çıkmıştır.

Kaynakça

  • Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed Eng 2020; 40(2): 624-638.
  • Turner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 2014; 20(3): 192-204.
  • Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 2015; 3(1): 42-53.
  • Dizon JRC, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 2018; 20: 44-67.
  • Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York, NY, USA: Springer, 2015.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng 2018; 143: 172-196.
  • Bourell D, Leu M, Rosen D. Materials for additive manufacturing. CIRP Ann 2017; 66(2): 659-681.
  • Singh R, Singh S, Kumar R, Ahuja IPS, Penna R, Feo L. Powder bed fusion process in additive manufacturing: An overview. Mater Today Proc 2020; 26: 3058-3070.
  • Li G, Zhao Y, Gao S, Ding S, Guo Y. Effect of ultrasonic vibration on mechanical properties of 3D printing non-crystalline and semi-crystalline polymers. Materials 2018; 11(5): 826.
  • Pragana JPM, Sampaio RFV, Bragança IMF, Silva CMA, Martins PAF. Hybrid metal additive manufacturing: A state–of–the-art review. Adv Ind Manuf Eng 2021; 2: 100032.
  • Hasanov S, Kantaros A, Piromalis D, Foteinopoulos P. Review on additive manufacturing of multi-material parts: Progress and challenges. Preprints 2021.
  • Weiss KP, Bagrets N, Lange C, Goldacker W, Wohlgemuth J. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. IOP Conf Ser Mater Sci Eng 2015; 102: 012022.
  • Ziemian C, Sharma M, Ziemian S. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. In: Mechanical Engineering. London, UK: IntechOpen, 2012.
  • Lanzotti A, Grasso M, Staiano G, Martorelli M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 2015; 21(5): 604-617.
  • Durgun I, Ertan R. Experimental investigation of FFF process for improvement of mechanical properties and production cost. Rapid Prototyp J 2014; 20(3): 228-235.
  • Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 2015; 69: 65-89.
  • Akçay Ö, Arı A. Effect of infill density and infill pattern on mechanical properties of 3D-printed PLA produced by FFF. Firat Univ J Eng Sci 2025; 37(1): 1.
  • Güneş M, Çayıroğlu İ. Mechanical behaviour of 3D printed parts with continuous steel wire reinforcement. El-Cezeri 2022; 9(1): 1.
  • Tlegenov Y, Hong GS, Lu WF. Nozzle condition monitoring in 3D printing. Robot Comput Integr Manuf 2018; 54: 45-55.
  • Dudescu C, Racz L. Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials. Acta Univ Cibiniensis Tech Ser 2018; 69(1): 23-30.
  • Bolat Ç, Ergene B, Ispartalı H. A comparative analysis of the effect of post production treatments and layer thickness on tensile and impact properties of additively manufactured polymers. Int Polym Process 2023; 38(1).
  • Bolat Ç, Ergene B. An experimental effort on impact properties of polylactic acid samples manufactured by additive manufacturing. Duzce Univ J Sci Technol 2023; 11(2).
  • Bolat Ç, Ergene B. An investigation on dimensional accuracy of 3D printed PLA, PET-G and ABS samples with different layer heights. Cukurova Univ J Fac Eng 2022; 37: 449-458.
  • Ergene B, Ispartalı H, Karakılınç U. Impact behavior of PET-G parts produced by fused deposition modelling depending on layer height and test temperature. J Fac Eng Archit Gazi Univ 2023; 38: 1345-1359.
  • Sezer HK, Eren O, Börklü HR, Özdemir V. Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: effect of fiber content and process parameters on mechanical properties. J Fac Eng Archit Gazi Univ 2019; 34(2).
  • Bacak S, Özkavak HV, Sofu MM. Comparison of mechanical properties of 3D-printed specimens manufactured via FFF with various inner geometries. J Inst Sci Technol 2021; 11(2).
  • Karaman E, Çolak O. Effect of Different Process Parameters on Mechanical Properties in Fused Deposition Modeling. ALKU Fen Bilim Derg 2019; 1(2).
  • Solmaz MY, Çelik E. Investigation of Compression Test Performances of Honeycomb Sandwich Composites Produced by 3D Printing Method. Firat Univ J Eng Sci 2018; 30(1).
  • Hanon MM, Marczis R, Zsidai L. Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA. Period Polytech Mech Eng 2021; 65(1).
  • Sammaiah P, Rushmamanisha K, Praveenadevi N, Reddy IR. The influence of process parameters on the surface roughness of the 3D printed part in FFF process. IOP Conf Ser Mater Sci Eng 2020; 981: 042021.
  • Kuruoğlu Y, Akgün M, Demir H. Modelling and Optimization of Surface Roughness and Tensile Strength of ABS, PLA and PETG Samples Produced by FDM Method. Int J 3D Print Technol Digit Ind 2022; 6(3).
  • Kopar M, Yildiz AR. Experimental investigation of mechanical properties of PLA, ABS, and PETG 3-d printing materials using fused deposition modeling technique. Mater Test 2023; 65(12): 1795-1804.
  • Ansari AA, Kamil M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater Today Proc 2021; 45: 5462-5468.

Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology

Yıl 2025, Cilt: 37 Sayı: 2, 737 - 746, 30.09.2025
https://doi.org/10.35234/fumbd.1700589

Öz

In recent years, developments in polymer material technologies have significantly increased the use of these materials in engineering applications. In this context, acrylonitrile butadiene styrene (ABS) has become a widely preferred thermoplastic in many industries such as automotive, electronics, health and construction due to its lightness, low cost, sustainability and high mechanical strength. Along with traditional production methods, advances in additive manufacturing (AM) technologies offer new opportunities in the production of polymers such as ABS and bring to the agenda the effect of production process parameters on final product performance. Studies in the literature show that production parameters, especially printing speed and raster angle, play a decisive role in mechanical properties. In this study, the effects of printing speed (60, 70 and 80 mm/s) and raster angle (±45° and 0–90°) variables on the mechanical performance of samples produced from ABS material using the FFF method were investigated. As a result of the tensile tests, tensile strengths of 36.26 MPa and 31.77 MPa were obtained for ±45° and 0–90° raster angles at a printing speed of 60 mm/s, respectively. Charpy impact test results revealed that the impact strength increased with the increase in printing speed; 53.88 kJ/m² impact strength was measured at ±45° raster angle and 40.69 kJ/m² impact strength was measured at 0–90° raster angle. SEM analysis showed that the interlayer gaps increased with the increase in printing speed, and this caused a decrease in tensile strength. The findings revealed that the selection of optimum production parameters plays a critical role in improving the mechanical performance of ABS samples. As a result, it was revealed that the printing angle and speed directly affect the mechanical performance of ABS material, and the optimization of these parameters is of critical importance.

Kaynakça

  • Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed Eng 2020; 40(2): 624-638.
  • Turner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 2014; 20(3): 192-204.
  • Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 2015; 3(1): 42-53.
  • Dizon JRC, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 2018; 20: 44-67.
  • Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York, NY, USA: Springer, 2015.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng 2018; 143: 172-196.
  • Bourell D, Leu M, Rosen D. Materials for additive manufacturing. CIRP Ann 2017; 66(2): 659-681.
  • Singh R, Singh S, Kumar R, Ahuja IPS, Penna R, Feo L. Powder bed fusion process in additive manufacturing: An overview. Mater Today Proc 2020; 26: 3058-3070.
  • Li G, Zhao Y, Gao S, Ding S, Guo Y. Effect of ultrasonic vibration on mechanical properties of 3D printing non-crystalline and semi-crystalline polymers. Materials 2018; 11(5): 826.
  • Pragana JPM, Sampaio RFV, Bragança IMF, Silva CMA, Martins PAF. Hybrid metal additive manufacturing: A state–of–the-art review. Adv Ind Manuf Eng 2021; 2: 100032.
  • Hasanov S, Kantaros A, Piromalis D, Foteinopoulos P. Review on additive manufacturing of multi-material parts: Progress and challenges. Preprints 2021.
  • Weiss KP, Bagrets N, Lange C, Goldacker W, Wohlgemuth J. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. IOP Conf Ser Mater Sci Eng 2015; 102: 012022.
  • Ziemian C, Sharma M, Ziemian S. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. In: Mechanical Engineering. London, UK: IntechOpen, 2012.
  • Lanzotti A, Grasso M, Staiano G, Martorelli M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 2015; 21(5): 604-617.
  • Durgun I, Ertan R. Experimental investigation of FFF process for improvement of mechanical properties and production cost. Rapid Prototyp J 2014; 20(3): 228-235.
  • Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 2015; 69: 65-89.
  • Akçay Ö, Arı A. Effect of infill density and infill pattern on mechanical properties of 3D-printed PLA produced by FFF. Firat Univ J Eng Sci 2025; 37(1): 1.
  • Güneş M, Çayıroğlu İ. Mechanical behaviour of 3D printed parts with continuous steel wire reinforcement. El-Cezeri 2022; 9(1): 1.
  • Tlegenov Y, Hong GS, Lu WF. Nozzle condition monitoring in 3D printing. Robot Comput Integr Manuf 2018; 54: 45-55.
  • Dudescu C, Racz L. Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials. Acta Univ Cibiniensis Tech Ser 2018; 69(1): 23-30.
  • Bolat Ç, Ergene B, Ispartalı H. A comparative analysis of the effect of post production treatments and layer thickness on tensile and impact properties of additively manufactured polymers. Int Polym Process 2023; 38(1).
  • Bolat Ç, Ergene B. An experimental effort on impact properties of polylactic acid samples manufactured by additive manufacturing. Duzce Univ J Sci Technol 2023; 11(2).
  • Bolat Ç, Ergene B. An investigation on dimensional accuracy of 3D printed PLA, PET-G and ABS samples with different layer heights. Cukurova Univ J Fac Eng 2022; 37: 449-458.
  • Ergene B, Ispartalı H, Karakılınç U. Impact behavior of PET-G parts produced by fused deposition modelling depending on layer height and test temperature. J Fac Eng Archit Gazi Univ 2023; 38: 1345-1359.
  • Sezer HK, Eren O, Börklü HR, Özdemir V. Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: effect of fiber content and process parameters on mechanical properties. J Fac Eng Archit Gazi Univ 2019; 34(2).
  • Bacak S, Özkavak HV, Sofu MM. Comparison of mechanical properties of 3D-printed specimens manufactured via FFF with various inner geometries. J Inst Sci Technol 2021; 11(2).
  • Karaman E, Çolak O. Effect of Different Process Parameters on Mechanical Properties in Fused Deposition Modeling. ALKU Fen Bilim Derg 2019; 1(2).
  • Solmaz MY, Çelik E. Investigation of Compression Test Performances of Honeycomb Sandwich Composites Produced by 3D Printing Method. Firat Univ J Eng Sci 2018; 30(1).
  • Hanon MM, Marczis R, Zsidai L. Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA. Period Polytech Mech Eng 2021; 65(1).
  • Sammaiah P, Rushmamanisha K, Praveenadevi N, Reddy IR. The influence of process parameters on the surface roughness of the 3D printed part in FFF process. IOP Conf Ser Mater Sci Eng 2020; 981: 042021.
  • Kuruoğlu Y, Akgün M, Demir H. Modelling and Optimization of Surface Roughness and Tensile Strength of ABS, PLA and PETG Samples Produced by FDM Method. Int J 3D Print Technol Digit Ind 2022; 6(3).
  • Kopar M, Yildiz AR. Experimental investigation of mechanical properties of PLA, ABS, and PETG 3-d printing materials using fused deposition modeling technique. Mater Test 2023; 65(12): 1795-1804.
  • Ansari AA, Kamil M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater Today Proc 2021; 45: 5462-5468.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm MBD
Yazarlar

Mehmet Kopar 0000-0001-7347-4192

Medeni Sömer 0000-0003-4411-3309

Mahmut Batuhan Çalışkan Bu kişi benim 0009-0002-8915-3734

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 16 Mayıs 2025
Kabul Tarihi 2 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 2

Kaynak Göster

APA Kopar, M., Sömer, M., & Çalışkan, M. B. (2025). Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(2), 737-746. https://doi.org/10.35234/fumbd.1700589
AMA Kopar M, Sömer M, Çalışkan MB. Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2025;37(2):737-746. doi:10.35234/fumbd.1700589
Chicago Kopar, Mehmet, Medeni Sömer, ve Mahmut Batuhan Çalışkan. “Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 2 (Eylül 2025): 737-46. https://doi.org/10.35234/fumbd.1700589.
EndNote Kopar M, Sömer M, Çalışkan MB (01 Eylül 2025) Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 2 737–746.
IEEE M. Kopar, M. Sömer, ve M. B. Çalışkan, “Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, ss. 737–746, 2025, doi: 10.35234/fumbd.1700589.
ISNAD Kopar, Mehmet vd. “Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/2 (Eylül2025), 737-746. https://doi.org/10.35234/fumbd.1700589.
JAMA Kopar M, Sömer M, Çalışkan MB. Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:737–746.
MLA Kopar, Mehmet vd. “Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, 2025, ss. 737-46, doi:10.35234/fumbd.1700589.
Vancouver Kopar M, Sömer M, Çalışkan MB. Experimental Investigation of the Effect of Raster Angle and Printing Speed on Mechanical Performance and Fracture Behavior of ABS Material Produced by FFF Technology. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(2):737-46.