Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparative Analysis of the Effects of Car-Following Models on Mixed Freeway Traffic Flow Performance: The Case of Istanbul E-80 Freeway

Yıl 2025, Cilt: 37 Sayı: 2, 813 - 822, 30.09.2025
https://doi.org/10.35234/fumbd.1764545

Öz

This study investigates the performance of freeway traffic flow control strategies in mixed traffic streams with varying proportions of Cooperative Adaptive Cruise Control (CACC) vehicles. By varying the car-following models representing human drivers, the effects of CACC penetration rates and two main roadway-based traffic management approaches—ramp metering and variable speed limits—are evaluated within a simulation-based framework. The proposed framework is implemented on a calibrated model of a real freeway segment, enabling a comparative analysis of different control algorithms. The findings reveal the interactions among car-following model selection, CACC penetration rate, and applied control strategies, highlighting the critical role of model choice in ensuring the reliability of results.

Kaynakça

  • Van Arem B, Van Driel CJG, Visser R. The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans Intell Transp Syst 2006; 7(4): 429-436.
  • Yu M, Long J. An eco-driving strategy for partially connected automated vehicles at a signalized intersection. IEEE Trans Intell Transp Syst 2022; 23(9): 15780-15793.
  • Liu H, Zhuang W, Yin G, Li Z, Cao D. Safety-critical and flexible cooperative on-ramp merging control of connected and automated vehicles in mixed traffic. IEEE Trans Intell Transp Syst 2023; 24(3): 2920-2934.
  • Wang J, Zheng Y, Chen C, Xu Q, Li K. Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability. IEEE Trans Intell Transp Syst 2022; 23(8): 12861-12876.
  • SAE. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE Standard J3016-202104, 2021.
  • Massera Filho C, Terra MH, Wolf DF. Safe optimization of highway traffic with robust model predictive control-based cooperative adaptive cruise control. IEEE Trans Intell Transp Syst 2017; 18(11): 3193-3203.
  • Chandler RE, Herman R, Montroll EW. Traffic dynamics: Studies in car following. Oper Res 1958; 6(2): 165-184.
  • Zhang D, Chen X, Wang J, Wang Y, Sun J. A comprehensive comparison study of four classical car-following models based on the large-scale naturalistic driving experiment. Simul Model Pract Theory 2021; 113: 102383.
  • Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 2000; 62(2): 1805-1824.
  • Wiedemann R, Reiter U. Microscopic traffic simulation, the simulation system—mission, background and actual state. CEC Project ICARUS, Project No V1052, Final Report, 1992.
  • Hoogendoorn S, Hoogendoorn RG, Daamen W. Wiedemann revisited. Transp Res Rec 2011; 2260(1): 152-162.
  • Sun Z, Yao X, Qin Z, Zhang P, Yang Z. Modeling car-following heterogeneities by considering leader–follower compositions and driving style differences. Transp Res Rec 2021; 2675(11): 851-864.
  • Goncu S, Erdagi IG, Silgu MA, Celikoglu HB. Analysis on effects of driving behavior on freeway traffic flow: A comparative evaluation of two driver profiles using two car-following models. In: IEEE Intelligent Vehicles Symposium (IV); 2022 Jun; Aachen, Germany. New York, NY, USA: IEEE. pp. 688-693.
  • Ro JW, Roop PS, Malik A, Ranjitkar P. A formal approach for modeling and simulation of human car-following behavior. IEEE Trans Intell Transp Syst 2018; 19(2): 639-648.
  • Zhou A, Peeta S, Wang J. Cooperative control of a platoon of connected autonomous vehicles and unconnected human-driven vehicles. Comput Civ Infrastruct Eng 2023; 38(18): 2513-2536.
  • Fu R, Li Z, Sun Q, Wang C. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic. Accid Anal Prev 2019; 132: 105260.
  • Zhou J, Wan J, Zhu F. Transfer learning based long short-term memory car-following model for adaptive cruise control. IEEE Trans Intell Transp Syst 2022; 23(11): 21345-21359.
  • Wang Z, Huang H, Tang J, Meng X, Hu L. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning. Accid Anal Prev 2022; 174: 106729.
  • Li Y, et al. A car-following model for connected and automated vehicles with heterogeneous time delays under fixed and switching communication topologies. IEEE Trans Intell Transp Syst 2022; 23(9): 14846-14858.
  • Shi J, Li K, Chen C, Kong W, Luo Y. Cooperative merging strategy in mixed traffic based on optimal final-state phase diagram with flexible highway merging points. IEEE Trans Intell Transp Syst 2023; 24(10): 11185-11197.
  • Luo J, et al. Real-time cooperative vehicle coordination at unsignalized road intersections. IEEE Trans Intell Transp Syst 2023; 24(5): 5390-5405.
  • Xu H, Cassandras CG, Li L, Zhang Y. Comparison of cooperative driving strategies for CAVs at signal-free intersections. IEEE Trans Intell Transp Syst 2022; 23(7): 7614-7627.
  • Bai Z, Hao P, ShangGuan W, Cai B, Barth MJ. Hybrid reinforcement learning-based eco-driving strategy for connected and automated vehicles at signalized intersections. IEEE Trans Intell Transp Syst 2022; 23(9): 15850-15863.
  • Goulet N, Ayalew B. Distributed maneuver planning with connected and automated vehicles for boosting traffic efficiency. IEEE Trans Intell Transp Syst 2022; 23(8): 10887-10901.
  • Ma C, Yu C, Zhang C, Yang X. Signal timing at an isolated intersection under mixed traffic environment with self-organizing connected and automated vehicles. Comput Civ Infrastruct Eng 2023; 38(14): 1955-1972.
  • Wang Q, et al. Adaptive leading cruise control in mixed traffic considering human behavioral diversity. IEEE Trans Intell Transp Syst 2024; 25(6): 5059-5070.
  • Chong L, Abbas MM, Medina A. Simulation of driver behavior with agent-based back-propagation neural network. Transp Res Rec 2011; 2249(1): 44-51.
  • Silgu MA, Erdagi IG, Goksu G, Celikoglu HB. H∞ state feedback controller for ODE model of traffic flow. IFAC-PapersOnLine 2021; 54(2): 19-24.
  • Goksu G, Silgu MA, Erdagi IG, Celikoglu HB. Integral input-to-state stability of traffic flow with variable speed limit. IFAC-PapersOnLine 2021; 54(2): 31-36.
  • Silgu MA, Erdagi IG, Goksu G, Celikoglu HB. Combined control of freeway traffic involving cooperative adaptive cruise controlled and human driven vehicles using feedback control through SUMO. IEEE Trans Intell Transp Syst 2022; 23(8): 11011-11025.
  • Dutta RG, Hu Y, Yu F, Zhang T, Jin Y. Design and analysis of secure distributed estimator for vehicular platooning in adversarial environment. IEEE Trans Intell Transp Syst 2022; 23(4): 3418-3429.
  • Siri S, Pasquale C, Sacone S, Ferrara A. Freeway traffic control: A survey. Automatica 2021; 130: 109655.
  • Ferrara A, Sacone S, Siri S. Freeway traffic modelling and control. Cham, Switzerland: Springer International Publishing, 2018.
  • Gipps PG. A behavioural car-following model for computer simulation. Transp Res Part B Methodol 1981; 15(2): 105-111.
  • Reuschel A. Fahrzeugbewegungen in der Kolonne. Osterr Ing Arch 1950; 4: 193-215.
  • Pipes LA. An operational analysis of traffic dynamics. J Appl Phys 1953; 24(3): 274-281.
  • Krauss S, Wagner P, Gawron C. Metastable states in a microscopic model of traffic flow. Phys Rev E 1997; 55(5): 5597-5602.
  • Milanés V, Shladover SE. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp Res Part C Emerg Technol 2014; 48: 285-300.
  • Barceló J, editor. Fundamentals of traffic simulation. New York, NY, USA: Springer, 2010.
  • Van Woensel T, Vandaele N. Empirical validation of a queueing approach to uninterrupted traffic flows. 4OR 2006; 4(1): 59-72.

Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği

Yıl 2025, Cilt: 37 Sayı: 2, 813 - 822, 30.09.2025
https://doi.org/10.35234/fumbd.1764545

Öz

Bu çalışma, farklı oranlarda işbirlikçi seyir uyarlamalı denetime sahip (Cooperative Adaptive Cruise Control- CACC) araçları içeren karma trafik akımlarında, otoyol trafik akımı denetim stratejilerinin performansını incelemektedir. Çalışmada, insan sürücülerin temsil edildiği araç takip modelleri değiştirilerek, CACC penetrasyon oranı ve iki temel yol tabanlı trafik yönetim yaklaşımı—katılım denetimi ve değişken hız kısıtı—benzetim tabanlı bir çerçevede değerlendirilmiştir. Çerçeve, gerçek bir otoyol ağ parçası için kalibrasyonu yapılmış model üzerinde uygulanmış ve farklı denetim algoritmalarının etkileri karşılaştırmalı olarak analiz edilmiştir. Bulgular, araç takip modelinin, CACC penetrasyon oranının ve uygulanan denetim stratejisinin trafik akımı performansı üzerindeki etkileşimlerini ortaya koymakta; model seçiminin sonuçların güvenilirliğinde kritik rol oynadığını göstermektedir.

Kaynakça

  • Van Arem B, Van Driel CJG, Visser R. The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans Intell Transp Syst 2006; 7(4): 429-436.
  • Yu M, Long J. An eco-driving strategy for partially connected automated vehicles at a signalized intersection. IEEE Trans Intell Transp Syst 2022; 23(9): 15780-15793.
  • Liu H, Zhuang W, Yin G, Li Z, Cao D. Safety-critical and flexible cooperative on-ramp merging control of connected and automated vehicles in mixed traffic. IEEE Trans Intell Transp Syst 2023; 24(3): 2920-2934.
  • Wang J, Zheng Y, Chen C, Xu Q, Li K. Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability. IEEE Trans Intell Transp Syst 2022; 23(8): 12861-12876.
  • SAE. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE Standard J3016-202104, 2021.
  • Massera Filho C, Terra MH, Wolf DF. Safe optimization of highway traffic with robust model predictive control-based cooperative adaptive cruise control. IEEE Trans Intell Transp Syst 2017; 18(11): 3193-3203.
  • Chandler RE, Herman R, Montroll EW. Traffic dynamics: Studies in car following. Oper Res 1958; 6(2): 165-184.
  • Zhang D, Chen X, Wang J, Wang Y, Sun J. A comprehensive comparison study of four classical car-following models based on the large-scale naturalistic driving experiment. Simul Model Pract Theory 2021; 113: 102383.
  • Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 2000; 62(2): 1805-1824.
  • Wiedemann R, Reiter U. Microscopic traffic simulation, the simulation system—mission, background and actual state. CEC Project ICARUS, Project No V1052, Final Report, 1992.
  • Hoogendoorn S, Hoogendoorn RG, Daamen W. Wiedemann revisited. Transp Res Rec 2011; 2260(1): 152-162.
  • Sun Z, Yao X, Qin Z, Zhang P, Yang Z. Modeling car-following heterogeneities by considering leader–follower compositions and driving style differences. Transp Res Rec 2021; 2675(11): 851-864.
  • Goncu S, Erdagi IG, Silgu MA, Celikoglu HB. Analysis on effects of driving behavior on freeway traffic flow: A comparative evaluation of two driver profiles using two car-following models. In: IEEE Intelligent Vehicles Symposium (IV); 2022 Jun; Aachen, Germany. New York, NY, USA: IEEE. pp. 688-693.
  • Ro JW, Roop PS, Malik A, Ranjitkar P. A formal approach for modeling and simulation of human car-following behavior. IEEE Trans Intell Transp Syst 2018; 19(2): 639-648.
  • Zhou A, Peeta S, Wang J. Cooperative control of a platoon of connected autonomous vehicles and unconnected human-driven vehicles. Comput Civ Infrastruct Eng 2023; 38(18): 2513-2536.
  • Fu R, Li Z, Sun Q, Wang C. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic. Accid Anal Prev 2019; 132: 105260.
  • Zhou J, Wan J, Zhu F. Transfer learning based long short-term memory car-following model for adaptive cruise control. IEEE Trans Intell Transp Syst 2022; 23(11): 21345-21359.
  • Wang Z, Huang H, Tang J, Meng X, Hu L. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning. Accid Anal Prev 2022; 174: 106729.
  • Li Y, et al. A car-following model for connected and automated vehicles with heterogeneous time delays under fixed and switching communication topologies. IEEE Trans Intell Transp Syst 2022; 23(9): 14846-14858.
  • Shi J, Li K, Chen C, Kong W, Luo Y. Cooperative merging strategy in mixed traffic based on optimal final-state phase diagram with flexible highway merging points. IEEE Trans Intell Transp Syst 2023; 24(10): 11185-11197.
  • Luo J, et al. Real-time cooperative vehicle coordination at unsignalized road intersections. IEEE Trans Intell Transp Syst 2023; 24(5): 5390-5405.
  • Xu H, Cassandras CG, Li L, Zhang Y. Comparison of cooperative driving strategies for CAVs at signal-free intersections. IEEE Trans Intell Transp Syst 2022; 23(7): 7614-7627.
  • Bai Z, Hao P, ShangGuan W, Cai B, Barth MJ. Hybrid reinforcement learning-based eco-driving strategy for connected and automated vehicles at signalized intersections. IEEE Trans Intell Transp Syst 2022; 23(9): 15850-15863.
  • Goulet N, Ayalew B. Distributed maneuver planning with connected and automated vehicles for boosting traffic efficiency. IEEE Trans Intell Transp Syst 2022; 23(8): 10887-10901.
  • Ma C, Yu C, Zhang C, Yang X. Signal timing at an isolated intersection under mixed traffic environment with self-organizing connected and automated vehicles. Comput Civ Infrastruct Eng 2023; 38(14): 1955-1972.
  • Wang Q, et al. Adaptive leading cruise control in mixed traffic considering human behavioral diversity. IEEE Trans Intell Transp Syst 2024; 25(6): 5059-5070.
  • Chong L, Abbas MM, Medina A. Simulation of driver behavior with agent-based back-propagation neural network. Transp Res Rec 2011; 2249(1): 44-51.
  • Silgu MA, Erdagi IG, Goksu G, Celikoglu HB. H∞ state feedback controller for ODE model of traffic flow. IFAC-PapersOnLine 2021; 54(2): 19-24.
  • Goksu G, Silgu MA, Erdagi IG, Celikoglu HB. Integral input-to-state stability of traffic flow with variable speed limit. IFAC-PapersOnLine 2021; 54(2): 31-36.
  • Silgu MA, Erdagi IG, Goksu G, Celikoglu HB. Combined control of freeway traffic involving cooperative adaptive cruise controlled and human driven vehicles using feedback control through SUMO. IEEE Trans Intell Transp Syst 2022; 23(8): 11011-11025.
  • Dutta RG, Hu Y, Yu F, Zhang T, Jin Y. Design and analysis of secure distributed estimator for vehicular platooning in adversarial environment. IEEE Trans Intell Transp Syst 2022; 23(4): 3418-3429.
  • Siri S, Pasquale C, Sacone S, Ferrara A. Freeway traffic control: A survey. Automatica 2021; 130: 109655.
  • Ferrara A, Sacone S, Siri S. Freeway traffic modelling and control. Cham, Switzerland: Springer International Publishing, 2018.
  • Gipps PG. A behavioural car-following model for computer simulation. Transp Res Part B Methodol 1981; 15(2): 105-111.
  • Reuschel A. Fahrzeugbewegungen in der Kolonne. Osterr Ing Arch 1950; 4: 193-215.
  • Pipes LA. An operational analysis of traffic dynamics. J Appl Phys 1953; 24(3): 274-281.
  • Krauss S, Wagner P, Gawron C. Metastable states in a microscopic model of traffic flow. Phys Rev E 1997; 55(5): 5597-5602.
  • Milanés V, Shladover SE. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp Res Part C Emerg Technol 2014; 48: 285-300.
  • Barceló J, editor. Fundamentals of traffic simulation. New York, NY, USA: Springer, 2010.
  • Van Woensel T, Vandaele N. Empirical validation of a queueing approach to uninterrupted traffic flows. 4OR 2006; 4(1): 59-72.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ulaşım ve Trafik, Ulaştırma Mühendisliği
Bölüm MBD
Yazarlar

Mehmet Ali Silgu 0000-0002-7667-8796

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 13 Ağustos 2025
Kabul Tarihi 7 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 2

Kaynak Göster

APA Silgu, M. A. (2025). Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(2), 813-822. https://doi.org/10.35234/fumbd.1764545
AMA Silgu MA. Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2025;37(2):813-822. doi:10.35234/fumbd.1764545
Chicago Silgu, Mehmet Ali. “Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 2 (Eylül 2025): 813-22. https://doi.org/10.35234/fumbd.1764545.
EndNote Silgu MA (01 Eylül 2025) Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 2 813–822.
IEEE M. A. Silgu, “Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, ss. 813–822, 2025, doi: 10.35234/fumbd.1764545.
ISNAD Silgu, Mehmet Ali. “Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/2 (Eylül2025), 813-822. https://doi.org/10.35234/fumbd.1764545.
JAMA Silgu MA. Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:813–822.
MLA Silgu, Mehmet Ali. “Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 2, 2025, ss. 813-22, doi:10.35234/fumbd.1764545.
Vancouver Silgu MA. Araç Takip Modellerinin Karma Otoyol Trafik Akım Başarımlarına Olan Etkisinin Karşılaştırılmalı Olarak İncelenmesi: İstanbul E-80 Otoyolu Örneği. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(2):813-22.