Review
BibTex RIS Cite

Muscular Plasticity In Terms Of Exercise Physiology

Year 2021, Volume: 6 Issue: 3, 266 - 278, 20.09.2021
https://doi.org/10.31680/gaunjss.960079

Abstract

The reactions and adaptations of the skeletal muscles at macro and molecular levels to aging, work-out types and some diseases are major factors in plasticity. Together with its significance in exercise physiology, the mechanisms of the muscular plasticity in skeletal muscle diseases such as sarcopenia, trauma or experimental models of spinal cord injuries, alterations in the myosin heavy chains of the muscular fibers due to the strength and power work-outs are subject of more and more clinical and translational studies. Accordingly, the physiological, structural and biochemical properties of the muscle fibers type I, typeIIa ve type IIx are of utmost vitality affecting the skeletal muscle plasticity. The effects of the work-out types on muscles are in close relationship with the mitochondrial variations, Ca++ rates and genetic factors. Regarding the results according to these factors particularly, personalized work-out types and the contents have priorities in terms of exercise physiology. Most of the experiments deal with stroke models and phenotype investigations of the muscles such as soleus and tibialis anterior, in terms of muscle-nerve relation. This review aims to investigate the relations of the alterations due to the skeletal muscle plasticity with various factors and to evaluate its connections particularly with the work-out types.

References

  • Abreu, P., Leal-Cardoso, J. H., Ceccatto, V. M., & Hirabara, S. M. (2017). Regulation of muscle plasticity and trophism by fatty acids: A short review. Rev Assoc Med Bras (1992), 63(2), 148-155.
  • Baldwin, K. M. (2000). Research in the exercise sciences: where do we go from here? J Appl Physiol (1985), 88(1), 332-336.
  • Balon, T. W., & Nadler, J. L. (1994). Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol (1985), 77(6), 2519-2521.
  • Bishop, D. J., Granata, C., & Eynon, N. (2014). Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta, 1840(4), 1266-1275.
  • Bruton, A. (2002). Muscle Plasticity: Response to training and detraining. Physiotherapy, 88(7), 398-408.
  • Chan, M. C., & Arany, Z. (2014). The many roles of PGC-1α in muscle — recent developments. Metabolism, 63(4), 441-451.
  • Chin, E. R. (2004). The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc, 63(2), 279-286.
  • Chin, E. R. (2005). Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol (1985), 99(2), 414-423.
  • Eccles, J. C. (1958). Problems of plasticity and organization at simplest levels of mammalian central nervous system. Perspect Biol Med, 1(4), 379-396.
  • Fitts, R. H., Riley, D. R., & Widrick, J. J. (2000). Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol (1985), 89(2), 823-839.
  • Gransee, H. M., Mantilla, C. B., & Sieck, G. C. (2012). Respiratory muscle plasticity. Compr Physiol, 2(2), 1441-1462.
  • Gregory, C. M., Vandenborne, K., Castro, M. J., & Dudley, G. A. (2003). Human and rat skeletal muscle adaptations to spinal cord injury. Can J Appl Physiol, 28(3), 491-500.
  • Hall, J. E., & Hall, M. E. (2020). Guyton and Hall Textbook of Medical Physiology (14th ed.): Elsevier.
  • Hoppeler, H. (1986). Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med, 7(4), 187-204.
  • Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. 219(2), 205-213.
  • Kelley, D. S., Bartolini, G. L., Newman, J. W., Vemuri, M., & Mackey, B. E. (2006). Fatty acid composition of liver, adipose tissue, spleen, and heart of mice fed diets containing t10, c12-, and c9, t11-conjugated linoleic acid. Prostaglandins Leukot Essent Fatty Acids, 74(5), 331-338.
  • Lieber, R. L., Roberts, T. J., Blemker, S. S., Lee, S. S. M., & Herzog, W. (2017). Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil, 14(1), 108.
  • Luden, N., Hayes, E., Minchev, K., Louis, E., Raue, U., Conley, T., & Trappe, S. (2012). Skeletal muscle plasticity with marathon training in novice runners. 22(5), 662-670.
  • Lüthi, J. M., Howald, H., Claassen, H., Rösler, K., Vock, P., & Hoppeler, H. (1986). Structural changes in skeletal muscle tissue with heavy-resistance exercise. Int J Sports Med, 7(3), 123-127.
  • Martínez-Redondo, V., Pettersson, A. T., & Ruas, J. L. (2015). The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia, 58(9), 1969-1977.
  • Montgomery, H., & Brull, D. (2000). Gene-environment interactions and the response to exercise. Int J Exp Pathol, 81(5), 283-287.
  • Pette, D. (2001). Historical Perspectives: Plasticity of mammalian skeletal muscle. J Appl Physiol (1985), 90, 1119-1124.
  • Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech, 50(6), 500-509.
  • Reichmann, H., Hoppeler, H., Mathieu-Costello, O., von Bergen, F., & Pette, D. (1985). Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Archiv, 404(1), 1-9.
  • Sanchez, A. M., Bernardi, H., Py, G., & Candau, R. B. (2014). Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol, 307(8), R956-969.
  • Snow, L. M., Low, W. C., & Thompson, L. V. (2012). Skeletal muscle plasticity after hemorrhagic stroke in rats: influence of spontaneous physical activity. Am J Phys Med Rehabil, 91(11), 965-976.
  • Snow, L. M., Sanchez, O. A., McLoon, L. K., Serfass, R. C., & Thompson, L. V. (2005). Myosin heavy chain isoform immunolabelling in diabetic rats with peripheral neuropathy. Acta Histochem, 107(3), 221-229.
  • Standring, S. (2015). Gray's Anatomy- The Anatomical Basis of Clinical Practice (S. Standring Ed. 41th ed.): Elsevier.
  • Tesch, P. A. (1988). Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc, 20(5 Suppl), S132-134.
  • Urso, M. L., Fiatarone Singh, M. A., Ding, W., Evans, W. J., Cosmas, A. C., & Manfredi, T. G. (2005). Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders. Age (Dordr), 27(2), 117-125.
  • Vickers, P. S., Nair, M., Wheeldon, A., Peate, I., & Migliozzi, J. G.(2011). Fundamentals of Anatomy and Physiology. For Nursing and Healthcare Students. Ringgold, Inc, Portland.

Egzersiz Fizyolojisi Bağlamında Musküler Plastisite

Year 2021, Volume: 6 Issue: 3, 266 - 278, 20.09.2021
https://doi.org/10.31680/gaunjss.960079

Abstract

İskelet kaslarının yaşa, egzersiz çeşidine ve bazı hastalıklara verdiği makro ve moleküler düzeydeki tepki ve adaptasyonlar plastisiteye etki eden en önemli faktörlerdir. Egzersiz fizyolojisi temelinde sahip olduğu anlamla birlikte, sarkopeni gibi iskelet kası bozuklukları; travmaya bağlı ya da deneysel modellemelerle oluşan medulla spinalis yaralanmaları; çeşitli dayanıklılık, güç ve kuvvet antrenmanlarıyla ilgili kas liflerinde bulunan miyozin ağır zincir ‘lerinde meydana gelen değişikliklerde musküler plastisite mekanizmaları giderek artan sayıda klinik ve translasyonel çalışmanın konusu olmaktadır. Buna binaen, Tip I, Tip IIa ve Tip IIx kas lifi tiplerinin fizyolojik, yapısal ve biyokimyasal özellikleri insanda iskelet kası plastisitesine etki eden en önemli faktörlerdir. Antrenman çeşitlerinin kaslara etkisi mitokondriyel değişiklikler, Ca++ oranları ve genetik faktörler ile yakından ilişkilidir. Özellikle bu faktörlere bağlı oluşan sonuçlara göre, kişiye özel düzenlenen antrenman çeşitleri ve içerikleri, günümüzde egzersiz fizyolojisinin önceliklerindendir. Bu konuda yapılan deneylerin büyük çoğunluğu inme modellemeleri ve m. soleus, m. tibialis anterior gibi kasların kas-sinir ilişkisine bağlı fenotip incelemeleriyle ilgili çalışmalardır. Bu derlemede, iskelet kaslarındaki plastisiteye bağlı değişikliklerin, çeşitli faktörlerle olan ilişkilerinin incelenmesi ve özellikle egzersiz çeşitleri ile bağlantılarının ortaya konması hedeflendi.

References

  • Abreu, P., Leal-Cardoso, J. H., Ceccatto, V. M., & Hirabara, S. M. (2017). Regulation of muscle plasticity and trophism by fatty acids: A short review. Rev Assoc Med Bras (1992), 63(2), 148-155.
  • Baldwin, K. M. (2000). Research in the exercise sciences: where do we go from here? J Appl Physiol (1985), 88(1), 332-336.
  • Balon, T. W., & Nadler, J. L. (1994). Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol (1985), 77(6), 2519-2521.
  • Bishop, D. J., Granata, C., & Eynon, N. (2014). Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta, 1840(4), 1266-1275.
  • Bruton, A. (2002). Muscle Plasticity: Response to training and detraining. Physiotherapy, 88(7), 398-408.
  • Chan, M. C., & Arany, Z. (2014). The many roles of PGC-1α in muscle — recent developments. Metabolism, 63(4), 441-451.
  • Chin, E. R. (2004). The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc, 63(2), 279-286.
  • Chin, E. R. (2005). Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol (1985), 99(2), 414-423.
  • Eccles, J. C. (1958). Problems of plasticity and organization at simplest levels of mammalian central nervous system. Perspect Biol Med, 1(4), 379-396.
  • Fitts, R. H., Riley, D. R., & Widrick, J. J. (2000). Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol (1985), 89(2), 823-839.
  • Gransee, H. M., Mantilla, C. B., & Sieck, G. C. (2012). Respiratory muscle plasticity. Compr Physiol, 2(2), 1441-1462.
  • Gregory, C. M., Vandenborne, K., Castro, M. J., & Dudley, G. A. (2003). Human and rat skeletal muscle adaptations to spinal cord injury. Can J Appl Physiol, 28(3), 491-500.
  • Hall, J. E., & Hall, M. E. (2020). Guyton and Hall Textbook of Medical Physiology (14th ed.): Elsevier.
  • Hoppeler, H. (1986). Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med, 7(4), 187-204.
  • Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. 219(2), 205-213.
  • Kelley, D. S., Bartolini, G. L., Newman, J. W., Vemuri, M., & Mackey, B. E. (2006). Fatty acid composition of liver, adipose tissue, spleen, and heart of mice fed diets containing t10, c12-, and c9, t11-conjugated linoleic acid. Prostaglandins Leukot Essent Fatty Acids, 74(5), 331-338.
  • Lieber, R. L., Roberts, T. J., Blemker, S. S., Lee, S. S. M., & Herzog, W. (2017). Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil, 14(1), 108.
  • Luden, N., Hayes, E., Minchev, K., Louis, E., Raue, U., Conley, T., & Trappe, S. (2012). Skeletal muscle plasticity with marathon training in novice runners. 22(5), 662-670.
  • Lüthi, J. M., Howald, H., Claassen, H., Rösler, K., Vock, P., & Hoppeler, H. (1986). Structural changes in skeletal muscle tissue with heavy-resistance exercise. Int J Sports Med, 7(3), 123-127.
  • Martínez-Redondo, V., Pettersson, A. T., & Ruas, J. L. (2015). The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia, 58(9), 1969-1977.
  • Montgomery, H., & Brull, D. (2000). Gene-environment interactions and the response to exercise. Int J Exp Pathol, 81(5), 283-287.
  • Pette, D. (2001). Historical Perspectives: Plasticity of mammalian skeletal muscle. J Appl Physiol (1985), 90, 1119-1124.
  • Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech, 50(6), 500-509.
  • Reichmann, H., Hoppeler, H., Mathieu-Costello, O., von Bergen, F., & Pette, D. (1985). Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Archiv, 404(1), 1-9.
  • Sanchez, A. M., Bernardi, H., Py, G., & Candau, R. B. (2014). Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol, 307(8), R956-969.
  • Snow, L. M., Low, W. C., & Thompson, L. V. (2012). Skeletal muscle plasticity after hemorrhagic stroke in rats: influence of spontaneous physical activity. Am J Phys Med Rehabil, 91(11), 965-976.
  • Snow, L. M., Sanchez, O. A., McLoon, L. K., Serfass, R. C., & Thompson, L. V. (2005). Myosin heavy chain isoform immunolabelling in diabetic rats with peripheral neuropathy. Acta Histochem, 107(3), 221-229.
  • Standring, S. (2015). Gray's Anatomy- The Anatomical Basis of Clinical Practice (S. Standring Ed. 41th ed.): Elsevier.
  • Tesch, P. A. (1988). Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc, 20(5 Suppl), S132-134.
  • Urso, M. L., Fiatarone Singh, M. A., Ding, W., Evans, W. J., Cosmas, A. C., & Manfredi, T. G. (2005). Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders. Age (Dordr), 27(2), 117-125.
  • Vickers, P. S., Nair, M., Wheeldon, A., Peate, I., & Migliozzi, J. G.(2011). Fundamentals of Anatomy and Physiology. For Nursing and Healthcare Students. Ringgold, Inc, Portland.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Sports Medicine
Journal Section Hareket ve Antrenman Bilimleri
Authors

Burak Karip 0000-0002-6757-4960

Hüseyin Avni Balcıoğlu 0000-0003-2291-0884

Publication Date September 20, 2021
Submission Date June 30, 2021
Published in Issue Year 2021 Volume: 6 Issue: 3

Cite

APA Karip, B., & Balcıoğlu, H. A. (2021). Egzersiz Fizyolojisi Bağlamında Musküler Plastisite. Gaziantep Üniversitesi Spor Bilimleri Dergisi, 6(3), 266-278. https://doi.org/10.31680/gaunjss.960079

Cited By

ACTN3 (rs1815739) GENİ İLE DARBEYE BAĞLI OLMAYAN SPOR YARALANMALARI İLİŞKİSİNİN İNCELENMESİ
Ankara Üniversitesi Beden Eğitimi ve Spor Yüksekokulu SPORMETRE Beden Eğitimi ve Spor Bilimleri Dergisi
https://doi.org/10.33689/spormetre.1290017

ISSN: 2536-5339

Gaziantep Üniversitesi Spor Bilimleri Dergisi

16157

Bu dergi içerisinde yer alan eserler aksi belirtilmedikçe Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.