Research Article
BibTex RIS Cite

Ortodontik Nikel-Titanyum kapalı yayların, elastomerik zincirlerin ve aktif Tie-Backlerin zamana göre kuvvet kayıplarının in-vitro karşılaştırılması

Year 2024, , 67 - 74, 02.05.2024
https://doi.org/10.17214/gaziaot.1238383

Abstract

AMAÇ: Ortodontik kuvvet elemanlarından nikel-titanyum kapalı yayların, elastomerik zincirlerin ve aktif tie- backlerin zamana göre kuvvet kayıplarının yapay tükürük içeren in vitro ortamda karşılaştırmaktır.
GEREÇ VE YÖNTEM: Çalışmada 3 farklı markadan elastomerik zincirler, Ni-Ti kapalı yaylar ve aktif tie-backler 9 gruba ayrıldı. Örneklerin yapay tükürük içeren in vitro ortamda zamana bağlı kuvvet kayıp yüzdeleri karşılaştırıldı. Kuvvet değerleri başlangıçta, 1. saatte, 24. saatte, 7. günde, 21. günde ve 28. günde ölçüldü ve kaydedildi. Elde edilen veriler Kolmogorov-Smirnov, Kruskal Wallis, Mann- Whitney U ve Wilcoxon testleri ile istatistiksel analize tabi tutuldu. Anlamlılık değeri p<0.05 olarak kabul edildi.
BULGULAR: Başlangıçta en fazla ve en az kuvvetler sırasıyla elastomerik zincirlerde ve nikel-titanyum kapalı yaylarda ölçüldü (p<0.05). 24. saatte yapılan ölçümlerde elastomerik zincirler, nikel-titanyum kapalı yaylar ve aktif tie-back’ler arasında anlamlı farklılık bulunmadı (p>0.05). 28. günde tüm gruplarda anlamlı kuvvet kayıpları ölçülse de, aktif tie-backlerde elastomerik zincirlere göre markadan bağımsız olarak anlamlı şekilde daha az kuvvet kaybı ölçüldü (p<0.05). 28. günde en az ve fazla kuvvetler sırasıyla elastomerik zincirlerde ve Ni-Ti kapalı yaylarda ölçüldü (p<0.05).
SONUÇ: Ortodontik boşluk kapatma mekaniklerinden, nikel-titanyum kapalı yaylar en stabil olmak üzere, aktif tie-backlerin elastomerik zincirlere göre daha stabil bir kuvvet uyguladığı dolayısıyla kullanılan kuvvet elemanı tipinin kuvvet kaybı düzeyinde temel belirteç olduğu görüldü.

References

  • 1. Proffit WR. Malocclusion and dentofacial deformity in contemporary society. In: Proffit WR, Fields HW, Larson BE, Sarver DM, editors. Contemporary orthodontics. 6th ed. St. Louis: Mosby; 2019. pp. 2-11.
  • 2. Eliades T, Sifakasis L. Cllinically relevant aspects of dental materials science in orthodontics. In: Graber LW, Vanarsdall RL, Vig KWL, Huang GJ, editors. Orthodontics current principles and techniques. 4 th ed. USA: Elsevier; 2017. pp.187-99.
  • 3. Ren Y, Maltha JC, Van ‘t Hof MA, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: A mathematic model. Am J Orthod Dentofacial Orthop 2004;125:71–7.
  • 4. Kojima Y, Kawamura J, Fukui H. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics. Am J Orthod Dentofacial Orthop 2012;142:501–8.
  • 5. Khanemasjedi M, Moradinejad M, Javidi P, Niknam O, Jahromi NH, Rakhshan V. Efficacy of elastic memory chains versus nickel–titanium coil springs in canine retraction: A two-center split-mouth randomized clinical trial. Int Orthod 2017;15:561–74.
  • 6. Nightingale C, Jones SP. A clinical investigation of force delivery systems for orthodontic space closure. J Orthod 2003;30: 229–36.
  • 7. Santos AC, Tortamano A, Naccarato SR, Dominguez-Rodriguez GC, Vigorito JW. An in vitro comparison of the force decay generated by different commercially available elastomeric chains and NiTi closed coil springs. Braz Oral Res 2007;21:51–7.
  • 8. Angolkar PV, Arnold JV, Nanda RS, Duncanson MG. Force degradation of closed coil springs: An in vitro evaluation. Am J Orthod Dentofac Orthop 1992;102:127–33.
  • 9. Halimi A, Azeroual MF, Doukkali A, El Mabrouk K, Zaoui F. Elastomeric chain force decay in artificial saliva: An in vitro study. Int Orthod 2013;11:60–70.
  • 10. Oshagh M, Khajeh F, Heidari S, Torkan S, Fattahi HR. The effect of different environmental factors on force degradation of three common systems of orthodontic space closure. Dent Res J (Isfahan) 2015;12:50–6.
  • 11. Nattrass, C. The effect of environmental factors on elastomeric chain and nickel titanium coil springs. Eur J Orthod 1998;20:169–76.
  • 12. Sameera F, Niranjan P, Saba F. Buccal Mucoadhesive Tablets of Sumatriptan Succinate for Treatment of Sustainable Migraine: Design, Formulation and In Vitro Evaluation. J Med Pharm Res 2015;4:114–26.
  • 13. Fraunhofer JA, Coffelt MT, Orbell GM. The effects of artificial saliva and topical fluoride treatments on the degradation of the elastic properties of orthodontic chains. Angle Orthod 1992;62:265–74.
  • 14. Kim KH, Chung CH, Choy K, Lee JS, Vanarsdall RL. Effects of prestretching on force degradation of synthetic elastomeric chains. Am J Orthod Dentofacial Orthop 2005;128: 477–82.
  • 15. Weissheimer A, Locks A, de Menezes LM, Borgatto AF, Derech CD. In vitro evaluation of force degradation of elastomeric chains used in Orthodontics. Dental Press J Orthod 2013;18:55–62.
  • 16. Ramachandraiah S, Sridharan K, Nishad A, Manjusha KK, Abraham EA, Ramees MM. Force Decay Characteristics of commonly used Elastomeric Chains on Exposure to various Mouth Rinses with different Alcohol Concentration: An in vitro Study. J Contemp Dent Pr 2017;18:813–20.
  • 17. Mousavi SM, Mahboobi S, Rakhshan V. Effects of different stretching extents, morphologies, and brands on initial force and force decay of orthodontic elastomeric chains: An in vitro study. Dent Res J (Isfahan) 2020;17:326–37.
  • 18. Das S, De Ida A, Das S, Nair V, Saha N, Chattopadhyay S. Comparative evaluation of three different rotary instrumentation systems for removal of gutta-percha from root canal during endodontic retreatment: An in vitro study. J Conserv Dent 2017;20:311–6.
  • 19. Makhlouf M, Aboul-Ezz A, Fayed MS, Hafez H. Evaluating the Amount of Tooth Movement and Root Resorption during Canine Retraction with Friction versus Frictionless Mechanics Using Cone Beam Computed Tomography. Open Access Maced J Med Sci 2018;6:384–8.
  • 20. Kassir CA, Daou M, Abboud M. Comparison of the force decay over time of four different brands of elastomeric chains (elongated to 25 mm grey/transparent and closed/open): An in vitro study. Int Orthod 2020;18:538–45.
  • 21. Shailaja AM, Kumar SP, Suchitra MP, Joy S, Pruthwin R. A tomographic assessment of alveolar bone after en masse retraction: An In Vitro Study. Int J Res Heal Allied Sci 2019;5:81–6.
  • 22. Martins MM, Mendes ÁM, Côrte Real MLNP, Goldner MTA. Elásticos ortodônticos em cadeia: revisão da literatura e aplicações clínicas. Rev. clín. ortodon. Dental Press 2006;5:71-8.
  • 23. Menon VV, Madhavan S, Chacko T, Gopalakrishnan S, Jacob J, Parayancode A. Comparative assessment of force decay of the elastomeric chain with the use of various mouth rinses in simulated oral environment: an in vitro study. J Pharm Bioallied Sci 2019;11:269-273.
  • 24. Mirhashemi AH, Khameneh NH, Shahpoorzadeh K, Shahroudi, AS. Comparison of force decay pattern in orthodontic elastomeric chains and NiTi closed coil springs, affected by five different mouthwashes: An in vitro Study. Dent 3000 2021;9:95–106.
  • 25. Javanmardi Z, Salehi P. Effects of Orthokin, Sensikin and Persica mouth rinses on the force degradation of elastic chains and NiTi coil springs. J Dent Res Dent Clin Dent Prospects 2016;10:99-105.
  • 26. Oshagh M, Ajami S. A comparison of force decay: elastic chain or tie-back method? World J Orthod 2010;11:45-51.
  • 27. Andhare P, Datana S, Agarwal SS, Chopra SS. Comparison of in vivo and in vitro force decay of elastomeric chains/modules: a systematic review and meta analysis. J World Fed Orthod 2021;10:155- 62.
  • 28. Cox C, Nguyen T, Koroluk L, Ko CC. In-vivo force decay of nickel-titanium closed-coil springs. Am J Orthod Dentofacial Orthop 2014;145:505-13.

In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs

Year 2024, , 67 - 74, 02.05.2024
https://doi.org/10.17214/gaziaot.1238383

Abstract

OBJECTIVE: This study aims to compare the force losses of nickel-titanium closed springs, elastomeric chains, and active tie-backs over time in an in vitro environment containing artificial saliva.
MATERIALS AND METHODS: In the study, elastomeric chains, nickel-titanium closed springs, and active tie-backs from 3 different brands were divided into 9 groups. The percentages of force loss in the samples over time were compared in the in vitro environment containing artificial saliva. Force values were measured and recorded at initial activation, 1st hour, 24th hour, 7th day, 21st day, and 28th day. Statistical analysis of the data were performed with Kolmogorov-Smirnov, Kruskal Wallis, Mann-Whitney U, and Wilcoxon tests. The significance value was considered as p<0.05.
RESULTS: The highest and lowest forces at the initial activation hour were measured in elastomeric chains and nickel-titanium closed springs, respectively (p<0.05). There was no significant difference between elastomeric chains, nickel-titanium closed springs, and active tie-backs in the measurements performed at the 24th hour (p>0.05). Although significant force losses were measured in all groups on the 28th day, active tie-backs lost significantly less force than elastomeric chains, regardless of brand. On the 28th day, the lowest and highest forces were measured in elastomeric chains and nickel-titanium closed springs, respectively (p<0.05).
CONCLUSIONS: Among the orthodontic space closure mechanics, nickel-titanium closed springs were the most stable; however, active tie-backs produced a more stable force than elastomeric chains, so the type of force element used was the main indicator of the force loss level.

References

  • 1. Proffit WR. Malocclusion and dentofacial deformity in contemporary society. In: Proffit WR, Fields HW, Larson BE, Sarver DM, editors. Contemporary orthodontics. 6th ed. St. Louis: Mosby; 2019. pp. 2-11.
  • 2. Eliades T, Sifakasis L. Cllinically relevant aspects of dental materials science in orthodontics. In: Graber LW, Vanarsdall RL, Vig KWL, Huang GJ, editors. Orthodontics current principles and techniques. 4 th ed. USA: Elsevier; 2017. pp.187-99.
  • 3. Ren Y, Maltha JC, Van ‘t Hof MA, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: A mathematic model. Am J Orthod Dentofacial Orthop 2004;125:71–7.
  • 4. Kojima Y, Kawamura J, Fukui H. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics. Am J Orthod Dentofacial Orthop 2012;142:501–8.
  • 5. Khanemasjedi M, Moradinejad M, Javidi P, Niknam O, Jahromi NH, Rakhshan V. Efficacy of elastic memory chains versus nickel–titanium coil springs in canine retraction: A two-center split-mouth randomized clinical trial. Int Orthod 2017;15:561–74.
  • 6. Nightingale C, Jones SP. A clinical investigation of force delivery systems for orthodontic space closure. J Orthod 2003;30: 229–36.
  • 7. Santos AC, Tortamano A, Naccarato SR, Dominguez-Rodriguez GC, Vigorito JW. An in vitro comparison of the force decay generated by different commercially available elastomeric chains and NiTi closed coil springs. Braz Oral Res 2007;21:51–7.
  • 8. Angolkar PV, Arnold JV, Nanda RS, Duncanson MG. Force degradation of closed coil springs: An in vitro evaluation. Am J Orthod Dentofac Orthop 1992;102:127–33.
  • 9. Halimi A, Azeroual MF, Doukkali A, El Mabrouk K, Zaoui F. Elastomeric chain force decay in artificial saliva: An in vitro study. Int Orthod 2013;11:60–70.
  • 10. Oshagh M, Khajeh F, Heidari S, Torkan S, Fattahi HR. The effect of different environmental factors on force degradation of three common systems of orthodontic space closure. Dent Res J (Isfahan) 2015;12:50–6.
  • 11. Nattrass, C. The effect of environmental factors on elastomeric chain and nickel titanium coil springs. Eur J Orthod 1998;20:169–76.
  • 12. Sameera F, Niranjan P, Saba F. Buccal Mucoadhesive Tablets of Sumatriptan Succinate for Treatment of Sustainable Migraine: Design, Formulation and In Vitro Evaluation. J Med Pharm Res 2015;4:114–26.
  • 13. Fraunhofer JA, Coffelt MT, Orbell GM. The effects of artificial saliva and topical fluoride treatments on the degradation of the elastic properties of orthodontic chains. Angle Orthod 1992;62:265–74.
  • 14. Kim KH, Chung CH, Choy K, Lee JS, Vanarsdall RL. Effects of prestretching on force degradation of synthetic elastomeric chains. Am J Orthod Dentofacial Orthop 2005;128: 477–82.
  • 15. Weissheimer A, Locks A, de Menezes LM, Borgatto AF, Derech CD. In vitro evaluation of force degradation of elastomeric chains used in Orthodontics. Dental Press J Orthod 2013;18:55–62.
  • 16. Ramachandraiah S, Sridharan K, Nishad A, Manjusha KK, Abraham EA, Ramees MM. Force Decay Characteristics of commonly used Elastomeric Chains on Exposure to various Mouth Rinses with different Alcohol Concentration: An in vitro Study. J Contemp Dent Pr 2017;18:813–20.
  • 17. Mousavi SM, Mahboobi S, Rakhshan V. Effects of different stretching extents, morphologies, and brands on initial force and force decay of orthodontic elastomeric chains: An in vitro study. Dent Res J (Isfahan) 2020;17:326–37.
  • 18. Das S, De Ida A, Das S, Nair V, Saha N, Chattopadhyay S. Comparative evaluation of three different rotary instrumentation systems for removal of gutta-percha from root canal during endodontic retreatment: An in vitro study. J Conserv Dent 2017;20:311–6.
  • 19. Makhlouf M, Aboul-Ezz A, Fayed MS, Hafez H. Evaluating the Amount of Tooth Movement and Root Resorption during Canine Retraction with Friction versus Frictionless Mechanics Using Cone Beam Computed Tomography. Open Access Maced J Med Sci 2018;6:384–8.
  • 20. Kassir CA, Daou M, Abboud M. Comparison of the force decay over time of four different brands of elastomeric chains (elongated to 25 mm grey/transparent and closed/open): An in vitro study. Int Orthod 2020;18:538–45.
  • 21. Shailaja AM, Kumar SP, Suchitra MP, Joy S, Pruthwin R. A tomographic assessment of alveolar bone after en masse retraction: An In Vitro Study. Int J Res Heal Allied Sci 2019;5:81–6.
  • 22. Martins MM, Mendes ÁM, Côrte Real MLNP, Goldner MTA. Elásticos ortodônticos em cadeia: revisão da literatura e aplicações clínicas. Rev. clín. ortodon. Dental Press 2006;5:71-8.
  • 23. Menon VV, Madhavan S, Chacko T, Gopalakrishnan S, Jacob J, Parayancode A. Comparative assessment of force decay of the elastomeric chain with the use of various mouth rinses in simulated oral environment: an in vitro study. J Pharm Bioallied Sci 2019;11:269-273.
  • 24. Mirhashemi AH, Khameneh NH, Shahpoorzadeh K, Shahroudi, AS. Comparison of force decay pattern in orthodontic elastomeric chains and NiTi closed coil springs, affected by five different mouthwashes: An in vitro Study. Dent 3000 2021;9:95–106.
  • 25. Javanmardi Z, Salehi P. Effects of Orthokin, Sensikin and Persica mouth rinses on the force degradation of elastic chains and NiTi coil springs. J Dent Res Dent Clin Dent Prospects 2016;10:99-105.
  • 26. Oshagh M, Ajami S. A comparison of force decay: elastic chain or tie-back method? World J Orthod 2010;11:45-51.
  • 27. Andhare P, Datana S, Agarwal SS, Chopra SS. Comparison of in vivo and in vitro force decay of elastomeric chains/modules: a systematic review and meta analysis. J World Fed Orthod 2021;10:155- 62.
  • 28. Cox C, Nguyen T, Koroluk L, Ko CC. In-vivo force decay of nickel-titanium closed-coil springs. Am J Orthod Dentofacial Orthop 2014;145:505-13.
There are 28 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Original Research Article
Authors

Emine Aydın 0000-0001-6295-6735

Orhan Çiçek 0000-0002-8172-6043

Nurhat Özkalaycı 0000-0002-5538-6233

Publication Date May 2, 2024
Published in Issue Year 2024

Cite

APA Aydın, E., Çiçek, O., & Özkalaycı, N. (2024). In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs. Acta Odontologica Turcica, 41(2), 67-74. https://doi.org/10.17214/gaziaot.1238383
AMA Aydın E, Çiçek O, Özkalaycı N. In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs. Acta Odontol Turc. May 2024;41(2):67-74. doi:10.17214/gaziaot.1238383
Chicago Aydın, Emine, Orhan Çiçek, and Nurhat Özkalaycı. “In Vitro Comparison of Force Losses over Time of Orthodontic Nickel-Titanium Closed Springs, Elastomeric Chains, and Active Tie-Backs”. Acta Odontologica Turcica 41, no. 2 (May 2024): 67-74. https://doi.org/10.17214/gaziaot.1238383.
EndNote Aydın E, Çiçek O, Özkalaycı N (May 1, 2024) In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs. Acta Odontologica Turcica 41 2 67–74.
IEEE E. Aydın, O. Çiçek, and N. Özkalaycı, “In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs”, Acta Odontol Turc, vol. 41, no. 2, pp. 67–74, 2024, doi: 10.17214/gaziaot.1238383.
ISNAD Aydın, Emine et al. “In Vitro Comparison of Force Losses over Time of Orthodontic Nickel-Titanium Closed Springs, Elastomeric Chains, and Active Tie-Backs”. Acta Odontologica Turcica 41/2 (May 2024), 67-74. https://doi.org/10.17214/gaziaot.1238383.
JAMA Aydın E, Çiçek O, Özkalaycı N. In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs. Acta Odontol Turc. 2024;41:67–74.
MLA Aydın, Emine et al. “In Vitro Comparison of Force Losses over Time of Orthodontic Nickel-Titanium Closed Springs, Elastomeric Chains, and Active Tie-Backs”. Acta Odontologica Turcica, vol. 41, no. 2, 2024, pp. 67-74, doi:10.17214/gaziaot.1238383.
Vancouver Aydın E, Çiçek O, Özkalaycı N. In vitro comparison of force losses over time of orthodontic nickel-titanium closed springs, elastomeric chains, and active tie-backs. Acta Odontol Turc. 2024;41(2):67-74.