Research Article
BibTex RIS Cite

Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials

Year 2014, , 1 - 6, 25.02.2014
https://doi.org/10.17214/aot.41767

Abstract

OBJECTIVE: The purpose of this study was to evaluate the effect of thermal and mechanical aging on the fracture toughness of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) core materials.

MATERIALS AND METHOD: Disc-shaped specimens for each core material (diameter: 15 mm, thickness: 1.2 mm), Cercon Base and Lava Plus, were randomly divided into three groups (control, thermal aging and mechanical aging). No aging was applied to control specimens. Thermal aging group specimens were subjected to 104 thermal cycles in water between 5-55 °C (dwell time of 30 s). Mechanical aging group specimens were subjected to a 200 N load for 105 times, with a frequency of 2 Hz. The fracture toughness of the control, thermal and the mechanical aging groups were measured by using the indentation fracture technique. Ten indentations were performed for each material. After each indentation, microscopic readings were recorded and the fracture toughness was calculated according to an established formula. Results were statistically analyzed by using a two-way analysis of variance (ANOVA) test.

RESULTS: Indentation fracture toughness values of the control, the thermal and the mechanical aging groups of Cercon Base were 6.28, 6.39 and 6.02 MPa√m, respectively. There was no significant difference between the control group of Cercon Base and the aging groups (p>0.05). However, significant difference was found between the thermal and the mechanical aging groups of Cercon Base (p<0.05). Indentation fracture toughness values of the control, the thermal and the mechanical aging groups of Lava Plus were 4.79, 4.76 and 4.91 MPa√m, respectively. Again, there was no significant difference between the control the aging groups of Lava Plus (p>0.05).

CONCLUSION: Compared to control, thermal and mechanical aging had no significant effect on the fracture toughness of the different Y-TZP core materials.

References

  • 1. Yılmaz H, Nemli SK, Aydin C, Bal BT, Tıraş T. Effect of fatigue on biaxial flexural strength of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Dent Mater 2011;27:786-95.
  • 2. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7:858-65.
  • 3. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404.
  • 4. Harada K, Shinya A, Yokoyama D, Shinya A. Effect of loading conditions on the fracture toughness of zirconia. J Prosthodont Res 2013;57:82-7.
  • 5. Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent 2007;98:120-8.
  • 6. Fischer H, Marx R. Fracture toughness of dental ceramics: comparison of bending and indentation method. Dent Mater 2002;18:12-9.
  • 7. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004;20:441-8.
  • 8. Quinn GD, Salem J, Bar-on I, Cho K, Foley M, Fang H. Fracture of advanced ceramics at room temperature. J Res Natl Inst Stand Technol 1992;97:579-607.
  • 9. Fujii T, Nose T. Evaluation of fracture toughness for ceramic materials. IJIS Int 1989;29:717-25.
  • 10. Nose T, Fujii T. Evaluation of fracture toughness for ceramic materials by a single-edge-precracked-beam method. J Am Ceram Soc 1988;71:328-33.
  • 11. Srawley JE. Wide range stress ıntensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int J Fract 1976;12:475- 6.
  • 12. Chantikul PG, Anstis R, Lawn BR, Marshall DB. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method. J Am Ceram Soc 1981;64:539-43.
  • 13. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J Am Ceram Soc 1981;64:533-8.
  • 14. Nemli SK, Yilmaz H, Aydin C, Bal BT, Tıraş T. Effect of fatigue on fracture toughness and phase transformation of Y-TZP ceramics by Xray diffraction and Raman spectroscopy. J Biomed Mater Res B Appl Biomater 2012:100B:416-24.
  • 15. Borchers L, Stiesch M, Bach FW, Buhl JC, Hübsch C, Kellner T, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010;6:4547-52.
  • 16. Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater 2007;23:106-14.
  • 17. Itinoche KM, Ozcan M, Bottino MA, Oyafuso D. Effect of mechanical cycling on the flexural strength of densely sintered ceramics. Dent Mater 2006;22:1029-34.
  • 18. Triwatana P, Srinuan P, Suputtamongkol K. Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic. J Adv Prosthodont 2013;5:36-43.
  • 19. Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695- 705.
  • 20. Chevalier J, Olagnon C, Fantozzi G. Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc 1999;82:3129-38.
  • 21. Vidotti HA, Pereira JR, Insaurralde E, Almeida AL, do Valle AL. Thermo and mechanical cycling and veneering method do not influence Y-TZP core/veneer interface bond strength. J Dent 2013;41:307-12.
  • 22. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819- 26.
  • 23. Turp V, Tuncelli B, Sen D, Goller G. Evaluation of hardness and fracture toughness, coupled with microstructural analysis, of zirconia ceramics stored in environments with different pH values. Dent Mater J 2012;31:891-902.
  • 24. Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A,Van’T Hof MA, Witter DJ, Kalk W, et al. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519-24.
  • 25. Kailer A, Nickel K, Gogotsi Y. Raman microspectroscopy of nanocrystalline and amophous phases in hardness indentations. J Raman Spectrosc 1999;30:939-46.
  • 26. Alghazzawi TF, Lemons J, Liu PR, Essig ME, Bartolucci AA, Janowski GM. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dentalzirconia. J Prosthodont 2012;21:363-9.
  • 27. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99.
  • 28. Peterson EA, Phillips RW, Swartz ML. A comparison of the physical properties of four restorative resins. J Am Dent Assoc 1966;3:1324-36.
  • 29. Plant CG, Jones DW, Darvell BW. The heat evolved and temperatures attained during setting of restorative materials. Br Dent J 1974;137:233-8.
  • 30. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP. Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater 2009;25:1122-7.
  • 31. Evans AG. Perspective on the development of high-toughness ceramics. J Am Ceram Soc 1990;73:187-206.
  • 32. International Organization for Standardization 6872. Dentistry-ceramic materials, 2008. Geneva, Switzerland. ISO; 2008. p.17-21.
  • 33. Scherrer SS, Denry IL, Wiskott HW. Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dent Mater 1998;14:246-55.
  • 34. Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B Appl Biomater 2004;71:99-107.
  • 35. Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, et al. Reliability and properties of ground Y-TZP zirconia ceramics. J Dent Res 2002;81:487-91.
  • 36. Okada T, Shinya A, Yokozuka S. Effects of load and loading time on fracture toughness with indentation method. Shigaku 1990;78:460- 86.
  • 37. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Evaluation of a high fracture toughness composite ceramic for dental applications. J Prosthodont 2008;17:538-44
  • 38. Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc 2003;134:1382-90.
  • 39. Vaslylkiv O, Sakka Y, Skorokhod V. Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics. J Am Ceram Soc 2003;86:299-304.
  • 40. Chevalier J, Cales B, Drouin JM. .Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999;82:2150-4

Isısal ve mekanik yaşlandırma işlemlerinin Y-TZP kor materyallerinin kırılma tokluğuna etkisi

Year 2014, , 1 - 6, 25.02.2014
https://doi.org/10.17214/aot.41767

Abstract

AMAÇ: Bu çalışmanın amacı, ısısal ve mekanik yaşlandırma işlemlerinin, yttria-stabilize dörtgen zirkon (Y-TZP) kor materyallerinin kırılma tokluğu üzerindeki etkisinin araştırılmasıdır.

GEREÇ VE YÖNTEM: Her iki kor materyalinden disk şeklinde üretilen Cercon Base and Lava Plus örnekler (15 mm çap 1.2 mm kalınlık) rastgele olarak 3 gruba (kontrol, ısısal yaşlandırma ve mekanik yaşlandırma) ayrıldı. Kontrol gruplarına herhangi bir işlem yapılmadı. Isısal yaşlandırma işlemi 5-55 °C sıcaklıklarda su içeren banyolarda, her birinde 30 sn kalacak şekilde 104 kez uygulandı. Mekanik yaşlandırma işlemi ise, 200 N yük ile, 2 Hz frekansta 105 kez uygulandı. Kırılma tokluğu deneyi indentasyon kırılma metodu kullanılarak gerçekleştirildi. Her grup için on ölçüm yapıldı. Her bir indentasyon sonrası mikroskopik okuma kaydedildi ve kırılma tokluğu değeri önceden belirlenmiş bir formüle göre hesaplandı. İstatistiksel analiz iki yönlü varyans analizi (ANOVA) ile yapıldı.

BULGULAR: Cercon Base grubu örneklerin kırılma tokluğu değerleri, kontrol, ısısal ve mekanik yaşlandırma grubu için sırasıyla 6.28, 6.39 ve 6.02 MPa√m olarak belirlendi. Cercon Base grubu örneklerinde, kontrol grubu ve yaşlandırma grupları arasında istatistiksel olarak anlamlı bir fark bulunmadı (p>0.05). Fakat, Cercon Base grubunda, ısısal ve mekanik yaşlandırma grupları arasında istatistiksel olarak anlamlı fark bulundu (p<0.05). Lava Plus grubu örneklerinin kırılma tokluğu değerleri, kontrol, ısısal ve mekanik yaşlandırma grubu için sırasıyla 4.79, 4.76 ve 4.91 MPa√m olarak belirlendi. Lava Plus grubu örneklerinde, kontrol grubu ve yaşlandırma grupları arasında istatistiksel olarak anlamlı bir fark bulunmadı (p>0.05).

SONUÇ: Yaşlandırma işlemlerinin, kontrole kıyasla, Y-TZP kor materyallerine ait kırılma tokluğu değerlerini belirgin olarak etkilemediği tespit edildi.

References

  • 1. Yılmaz H, Nemli SK, Aydin C, Bal BT, Tıraş T. Effect of fatigue on biaxial flexural strength of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Dent Mater 2011;27:786-95.
  • 2. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7:858-65.
  • 3. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404.
  • 4. Harada K, Shinya A, Yokoyama D, Shinya A. Effect of loading conditions on the fracture toughness of zirconia. J Prosthodont Res 2013;57:82-7.
  • 5. Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent 2007;98:120-8.
  • 6. Fischer H, Marx R. Fracture toughness of dental ceramics: comparison of bending and indentation method. Dent Mater 2002;18:12-9.
  • 7. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004;20:441-8.
  • 8. Quinn GD, Salem J, Bar-on I, Cho K, Foley M, Fang H. Fracture of advanced ceramics at room temperature. J Res Natl Inst Stand Technol 1992;97:579-607.
  • 9. Fujii T, Nose T. Evaluation of fracture toughness for ceramic materials. IJIS Int 1989;29:717-25.
  • 10. Nose T, Fujii T. Evaluation of fracture toughness for ceramic materials by a single-edge-precracked-beam method. J Am Ceram Soc 1988;71:328-33.
  • 11. Srawley JE. Wide range stress ıntensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int J Fract 1976;12:475- 6.
  • 12. Chantikul PG, Anstis R, Lawn BR, Marshall DB. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method. J Am Ceram Soc 1981;64:539-43.
  • 13. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J Am Ceram Soc 1981;64:533-8.
  • 14. Nemli SK, Yilmaz H, Aydin C, Bal BT, Tıraş T. Effect of fatigue on fracture toughness and phase transformation of Y-TZP ceramics by Xray diffraction and Raman spectroscopy. J Biomed Mater Res B Appl Biomater 2012:100B:416-24.
  • 15. Borchers L, Stiesch M, Bach FW, Buhl JC, Hübsch C, Kellner T, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010;6:4547-52.
  • 16. Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater 2007;23:106-14.
  • 17. Itinoche KM, Ozcan M, Bottino MA, Oyafuso D. Effect of mechanical cycling on the flexural strength of densely sintered ceramics. Dent Mater 2006;22:1029-34.
  • 18. Triwatana P, Srinuan P, Suputtamongkol K. Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic. J Adv Prosthodont 2013;5:36-43.
  • 19. Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695- 705.
  • 20. Chevalier J, Olagnon C, Fantozzi G. Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc 1999;82:3129-38.
  • 21. Vidotti HA, Pereira JR, Insaurralde E, Almeida AL, do Valle AL. Thermo and mechanical cycling and veneering method do not influence Y-TZP core/veneer interface bond strength. J Dent 2013;41:307-12.
  • 22. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819- 26.
  • 23. Turp V, Tuncelli B, Sen D, Goller G. Evaluation of hardness and fracture toughness, coupled with microstructural analysis, of zirconia ceramics stored in environments with different pH values. Dent Mater J 2012;31:891-902.
  • 24. Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A,Van’T Hof MA, Witter DJ, Kalk W, et al. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519-24.
  • 25. Kailer A, Nickel K, Gogotsi Y. Raman microspectroscopy of nanocrystalline and amophous phases in hardness indentations. J Raman Spectrosc 1999;30:939-46.
  • 26. Alghazzawi TF, Lemons J, Liu PR, Essig ME, Bartolucci AA, Janowski GM. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dentalzirconia. J Prosthodont 2012;21:363-9.
  • 27. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99.
  • 28. Peterson EA, Phillips RW, Swartz ML. A comparison of the physical properties of four restorative resins. J Am Dent Assoc 1966;3:1324-36.
  • 29. Plant CG, Jones DW, Darvell BW. The heat evolved and temperatures attained during setting of restorative materials. Br Dent J 1974;137:233-8.
  • 30. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP. Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater 2009;25:1122-7.
  • 31. Evans AG. Perspective on the development of high-toughness ceramics. J Am Ceram Soc 1990;73:187-206.
  • 32. International Organization for Standardization 6872. Dentistry-ceramic materials, 2008. Geneva, Switzerland. ISO; 2008. p.17-21.
  • 33. Scherrer SS, Denry IL, Wiskott HW. Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dent Mater 1998;14:246-55.
  • 34. Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B Appl Biomater 2004;71:99-107.
  • 35. Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, et al. Reliability and properties of ground Y-TZP zirconia ceramics. J Dent Res 2002;81:487-91.
  • 36. Okada T, Shinya A, Yokozuka S. Effects of load and loading time on fracture toughness with indentation method. Shigaku 1990;78:460- 86.
  • 37. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Evaluation of a high fracture toughness composite ceramic for dental applications. J Prosthodont 2008;17:538-44
  • 38. Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc 2003;134:1382-90.
  • 39. Vaslylkiv O, Sakka Y, Skorokhod V. Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics. J Am Ceram Soc 2003;86:299-304.
  • 40. Chevalier J, Cales B, Drouin JM. .Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc 1999;82:2150-4
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Research Article
Authors

Merve Bankoğlu Güngör This is me

Handan Yılmaz This is me

Bilge Turhan Bal This is me

Seçil Karakoca Nemli This is me

Pırıl Türkan Sindel This is me

Cemal Aydın This is me

Publication Date February 25, 2014
Published in Issue Year 2014

Cite

APA Bankoğlu Güngör, M., Yılmaz, H., Turhan Bal, B., Karakoca Nemli, S., et al. (2014). Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials. Acta Odontologica Turcica, 31(1), 1-6. https://doi.org/10.17214/aot.41767
AMA Bankoğlu Güngör M, Yılmaz H, Turhan Bal B, Karakoca Nemli S, Sindel PT, Aydın C. Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials. Acta Odontol Turc. April 2014;31(1):1-6. doi:10.17214/aot.41767
Chicago Bankoğlu Güngör, Merve, Handan Yılmaz, Bilge Turhan Bal, Seçil Karakoca Nemli, Pırıl Türkan Sindel, and Cemal Aydın. “Effect of Thermal and Mechanical Aging on Fracture Toughness of Y-TZP Core Materials”. Acta Odontologica Turcica 31, no. 1 (April 2014): 1-6. https://doi.org/10.17214/aot.41767.
EndNote Bankoğlu Güngör M, Yılmaz H, Turhan Bal B, Karakoca Nemli S, Sindel PT, Aydın C (April 1, 2014) Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials. Acta Odontologica Turcica 31 1 1–6.
IEEE M. Bankoğlu Güngör, H. Yılmaz, B. Turhan Bal, S. Karakoca Nemli, P. T. Sindel, and C. Aydın, “Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials”, Acta Odontol Turc, vol. 31, no. 1, pp. 1–6, 2014, doi: 10.17214/aot.41767.
ISNAD Bankoğlu Güngör, Merve et al. “Effect of Thermal and Mechanical Aging on Fracture Toughness of Y-TZP Core Materials”. Acta Odontologica Turcica 31/1 (April 2014), 1-6. https://doi.org/10.17214/aot.41767.
JAMA Bankoğlu Güngör M, Yılmaz H, Turhan Bal B, Karakoca Nemli S, Sindel PT, Aydın C. Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials. Acta Odontol Turc. 2014;31:1–6.
MLA Bankoğlu Güngör, Merve et al. “Effect of Thermal and Mechanical Aging on Fracture Toughness of Y-TZP Core Materials”. Acta Odontologica Turcica, vol. 31, no. 1, 2014, pp. 1-6, doi:10.17214/aot.41767.
Vancouver Bankoğlu Güngör M, Yılmaz H, Turhan Bal B, Karakoca Nemli S, Sindel PT, Aydın C. Effect of thermal and mechanical aging on fracture toughness of Y-TZP core materials. Acta Odontol Turc. 2014;31(1):1-6.