Research Article
BibTex RIS Cite

Evaluation of microhardness and Bis-GMA release of a new composite restorative material

Year 2020, Volume: 37 Issue: 1, 18 - 23, 01.01.2020
https://doi.org/10.17214/gaziaot.599405

Abstract

Objective: The aim of this
study is to compare the microhardness, the degree of conversion and the elution
of Bis-GMA of a new microhybrid composite for posterior restoration with a
commonly used microhybrid composite material
.

Materials
and Method:
In this study, a newly manufactured composite resin
material with a microhybrid filler content (NOVA Compo-HS, Imicryl, Konya,
Turkey) and another commercially available composite resin material containing
microhybrid filler (Filtek Z-250, 3M ESPE, St. Paul, MN, USA) were used. 20
samples of each material were prepared in cylindrical form (2x2x2 mm). The
amount of the eluted Bis-GMA from ten of the 20 samples for each material was
analyzed by high performance liquid chromatography (HPLC) (Shimadzu, Model SPD
20A, Shimadzu Corporation, Kyoto, Japan). The Vickers surface microhardness of
the other remaining ten of 20 samples for each material was measured and the
polymerization depth was evaluated by calculating the Vickers hardness ratio. The
statistical analysis was performed with two independent samples t-test.

Results: There were differences between NOVA Compo-HS and
Filtek Z250 in hardness values recorded on the upper and lower surfaces
(p<0.001). The amount of eluted Bis-GMA monomer from NOVA Compo-HS and
Filtek Z250 was 1.28 mg/L and 0.78 mg/L. There was a statistically difference
between the groups (p<0.001).







Conclusion: NOVA Compo-HS,
a new composite resin material with microfiller, was not found as sufficient as
the other microfiller composite for the mechanical properties (surface
microhardness and the ratio of bottom/top surface hardness values). The amount
of eluted Bis-GMA monomers was higher in the NOVA Compo-HS composite than the
Filtek Z250.

References

  • Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982;90:490-6.
  • Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S. Degreeof conversion of composites measured by DTA and FTIR. Dent Mater 2001;17:178-83.
  • Hume WR, Gerzina TM. Bioavailability of components of resin-based materials which are applied to teeth. Crit Rev Oral Biol Med 1996;7:172-9.
  • Nathanson D, Lertpitayakun P, Lamkin MS, Edalatpour M, Chou LI. In-vitro elution of leachable components from dental sealants. J Am Dent Assoc 1997;128:1517-23.
  • Geurtsen W, Lehmann F, Spahl W, Leyhausen G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 1998;41:474-80.
  • Schweikl H, Schmalz G. Triethylene glycol dimethacrylateinduces large deletions in the HPRT gene of V79 cells. Mutat Res 1999;438:71-8.
  • Munksgaard EC, Freund M. Enzymatic hydrolysis of (di)me-thacrylates and their polymers. Scand J Dent Res 1990;98:261-7.
  • Wataha JC, Hanks CT, Strawn SE, Fat JC. Cytotoxicity ofcomponents of resins and other dental restorative materials. J Oral Rehabil 1994;21:453-62.
  • Wataha JC, Rueggeberg FA, Lapp CA, Lewis JB, LockwoodPE, Ergle JW, et al. In vitro cytotoxicity of resin-containing restorative materials after aging in artificial saliva. Clin Oral Invest 1999;3:144-9.
  • Hanks CT, Wataha JC, Sun ZL. In vitro models of biocompatibility: A review. Dent Mater 1996;12:186-93.
  • Konradsson K, van Dijken JW. Interleukin-1 levels in gingival crevicular fluid adjacent to restorations of calcium aluminate cement and resin composite. J Clin Periodontol 2005;32:462-6.
  • Moszner N, Ulrich S. New developments of polymeric dental composites. Prog Polym Sci 2001;26:535-76.
  • Heil J, Reifferscheild G, Waldmann P, Leyhausen G, Geurtsen W. Genotoxicity of dental materials. Mutat Res 1996;368:181-94.
  • Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985;1:11-4.
  • Anusavice KJ. Physical properties of dental materials. In: Anusavice K, Shen C, Rawls HR, editors. Phillips' science of dental materials. 12th ed. St. Louis, MO: Saunders Elsevier Inc., 2013. p.63-4.
  • Mousavinasab SM, Meyers I. Comparison of depth of cure, hardness and heat generation of LED and high intensity QTH light sources. Eur J Dent 2011;5:299-304.
  • Galvao MR, Caldas SG, Bagnato VS, Rastelli AN, Andrade MF. Evaluation of degree of conversion and hardness of dental composites photoactivated with different light guide tips. Eur J Dent 2013;7:86-93.
  • Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I. Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 2008;33:408-12.
  • Knobloch LA, Kerby RE, Clelland N, Lee J. Hardness and degree of conversion of posterior packable composites. Oper Dent 2004;29:642-9.
  • Craig RG, Powers JM. Restorative Dental Materials. 11th ed. St. Louis: Mosby Elsevier; 2002.
  • Sharkey S, Ray N, Burke F, Ziada H, Hannigan A. Surface hardness of light-activated resin composites cured by two different visible light sources: an in vitro study. Quintessence Int 2001;32:401-5.
  • Çetin A, Hataysal A, Aktaş B. Yeni iki tip kompozit materyalin mekanik özelliklerinin karşılaştırılması. Selcuk Dent J 2018;5:194-202.
  • Ho SM, Tang WY, Belmonte de Frausto J, PrinsGS. Developmental exposure to estradiol and Bisphenol-A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Research 2006;66:5624-32.
  • Beronius A, Rudén C, Håkansson H, Hanberg A. Risk to all or none?: A comparative analysis of controversies in the health risk assessment of Bisphenol A. Reprod Toxicol 2010;29:132-46.
  • Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 2007;115:80-6.
  • Altintas SH, Usumez A. Evaluation of TEGDMA leaching from four resin cements by HPLC. Eur J Dent 2012;6:255-62.
  • Moharamzadeh K, Van Noort R, Brook IM, Scutt AM. HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci: Mater Med 2007;18:133-7.
  • Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater 1990;6:282-7.
  • Sideridou I, Achilias DS. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater 2005;74:617-26.
  • Statement of EFSA prepared by the Unit on food contact materials, enzymes, flavourings and processing aids (CEF) and the Unit on Assessment Methodology (AMU) on a study associating bisphenol A with medical disorders. The EFSA Journal 2008;838:1-3.

Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi

Year 2020, Volume: 37 Issue: 1, 18 - 23, 01.01.2020
https://doi.org/10.17214/gaziaot.599405

Abstract

Amaç: Bu
çalışmanın amacı posterior restorasyon için üretilen yeni mikrohibrit bir
kompozitin mikrosertlik, dönüşüm derecesi ve Bis-GMA salımını sıkça kullanılan
mikrohibrit bir kompozit materyal ile karşılaştırmaktır.

Gereç ve Yöntem: Bu
çalışmada mikrohibrit doldurucu içerikli yeni üretilmiş (NOVA Compo-HS,
Imicryl, Konya, Türkiye) ve piyasada bulunan mikrohibrit doldurucu içeren
başka bir kompozit rezin materyeli (Filtek Z-250, 3M ESPE, St. Paul, MN, ABD)
kullanıldı. Her bir materyalden silindir şeklinde (2x2x2 mm boyutlarında)
20’şer örnek hazırlandı. Her materyal için hazırlanan 20 örnekten 10 adetinde
salınan Bis-GMA miktarı yüksek performanslı sıvı kromatografisi (HPLC)
(Shimadzu, Model SPD 20A, Shimadzu Corporation, Kyoto, Japonya) ile analiz
edildi. Her materyal için geri kalan diğer 10 örneğin Vickers yüzey mikrosertlik
dereceleri ölçüldü ve polimerizasyon derinliği Vickers sertlik oranı
hesaplanarak değerlendirildi. İstatistiksel analizler bağımsız gruplar t-testi
ile yapıldı.

Bulgular: NOVA
Compo-HS ve Filtek Z250 arasında üst ve alt yüzeylerde kaydedilen sertlik
değerlerinde istatistiksel bir fark olduğu görüldü (p<0.001). NOVA Compo-HS
ve Filtek Z250 kompozitlerine ait Bis-GMA salım miktarı ortalama 1.28 mg/L ve
0.78 mg/L idi. Gruplar arasında istatistiksel olarak fark vardı (p<0.001).







Sonuç: Mikro
dolduruculu yeni kompozit rezin materyal olan NOVA Compo-HS, mekanik
özellikleri (yüzey mikrosertlik dereceleri ve alt/üst yüzeyin Vickers
mikrosertlik oranı) bakımından diğer mikro dolduruculu kompozit kadar yeterli
bulunmadı. NOVA Compo-HS kompozitten salınan Bis-GMA monomer miktarı, Filtek
Z250’ye göre daha fazlaydı.

References

  • Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982;90:490-6.
  • Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S. Degreeof conversion of composites measured by DTA and FTIR. Dent Mater 2001;17:178-83.
  • Hume WR, Gerzina TM. Bioavailability of components of resin-based materials which are applied to teeth. Crit Rev Oral Biol Med 1996;7:172-9.
  • Nathanson D, Lertpitayakun P, Lamkin MS, Edalatpour M, Chou LI. In-vitro elution of leachable components from dental sealants. J Am Dent Assoc 1997;128:1517-23.
  • Geurtsen W, Lehmann F, Spahl W, Leyhausen G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 1998;41:474-80.
  • Schweikl H, Schmalz G. Triethylene glycol dimethacrylateinduces large deletions in the HPRT gene of V79 cells. Mutat Res 1999;438:71-8.
  • Munksgaard EC, Freund M. Enzymatic hydrolysis of (di)me-thacrylates and their polymers. Scand J Dent Res 1990;98:261-7.
  • Wataha JC, Hanks CT, Strawn SE, Fat JC. Cytotoxicity ofcomponents of resins and other dental restorative materials. J Oral Rehabil 1994;21:453-62.
  • Wataha JC, Rueggeberg FA, Lapp CA, Lewis JB, LockwoodPE, Ergle JW, et al. In vitro cytotoxicity of resin-containing restorative materials after aging in artificial saliva. Clin Oral Invest 1999;3:144-9.
  • Hanks CT, Wataha JC, Sun ZL. In vitro models of biocompatibility: A review. Dent Mater 1996;12:186-93.
  • Konradsson K, van Dijken JW. Interleukin-1 levels in gingival crevicular fluid adjacent to restorations of calcium aluminate cement and resin composite. J Clin Periodontol 2005;32:462-6.
  • Moszner N, Ulrich S. New developments of polymeric dental composites. Prog Polym Sci 2001;26:535-76.
  • Heil J, Reifferscheild G, Waldmann P, Leyhausen G, Geurtsen W. Genotoxicity of dental materials. Mutat Res 1996;368:181-94.
  • Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985;1:11-4.
  • Anusavice KJ. Physical properties of dental materials. In: Anusavice K, Shen C, Rawls HR, editors. Phillips' science of dental materials. 12th ed. St. Louis, MO: Saunders Elsevier Inc., 2013. p.63-4.
  • Mousavinasab SM, Meyers I. Comparison of depth of cure, hardness and heat generation of LED and high intensity QTH light sources. Eur J Dent 2011;5:299-304.
  • Galvao MR, Caldas SG, Bagnato VS, Rastelli AN, Andrade MF. Evaluation of degree of conversion and hardness of dental composites photoactivated with different light guide tips. Eur J Dent 2013;7:86-93.
  • Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I. Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 2008;33:408-12.
  • Knobloch LA, Kerby RE, Clelland N, Lee J. Hardness and degree of conversion of posterior packable composites. Oper Dent 2004;29:642-9.
  • Craig RG, Powers JM. Restorative Dental Materials. 11th ed. St. Louis: Mosby Elsevier; 2002.
  • Sharkey S, Ray N, Burke F, Ziada H, Hannigan A. Surface hardness of light-activated resin composites cured by two different visible light sources: an in vitro study. Quintessence Int 2001;32:401-5.
  • Çetin A, Hataysal A, Aktaş B. Yeni iki tip kompozit materyalin mekanik özelliklerinin karşılaştırılması. Selcuk Dent J 2018;5:194-202.
  • Ho SM, Tang WY, Belmonte de Frausto J, PrinsGS. Developmental exposure to estradiol and Bisphenol-A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Research 2006;66:5624-32.
  • Beronius A, Rudén C, Håkansson H, Hanberg A. Risk to all or none?: A comparative analysis of controversies in the health risk assessment of Bisphenol A. Reprod Toxicol 2010;29:132-46.
  • Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 2007;115:80-6.
  • Altintas SH, Usumez A. Evaluation of TEGDMA leaching from four resin cements by HPLC. Eur J Dent 2012;6:255-62.
  • Moharamzadeh K, Van Noort R, Brook IM, Scutt AM. HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci: Mater Med 2007;18:133-7.
  • Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater 1990;6:282-7.
  • Sideridou I, Achilias DS. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater 2005;74:617-26.
  • Statement of EFSA prepared by the Unit on food contact materials, enzymes, flavourings and processing aids (CEF) and the Unit on Assessment Methodology (AMU) on a study associating bisphenol A with medical disorders. The EFSA Journal 2008;838:1-3.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Original Research Article
Authors

Zeliha Gonca Bek Kürklü 0000-0002-4726-7883

Ceren Kalkan Deveci This is me 0000-0002-3874-1176

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 37 Issue: 1

Cite

APA Bek Kürklü, Z. G., & Kalkan Deveci, C. (2020). Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi. Acta Odontologica Turcica, 37(1), 18-23. https://doi.org/10.17214/gaziaot.599405
AMA Bek Kürklü ZG, Kalkan Deveci C. Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi. Acta Odontol Turc. January 2020;37(1):18-23. doi:10.17214/gaziaot.599405
Chicago Bek Kürklü, Zeliha Gonca, and Ceren Kalkan Deveci. “Yeni Bir Kompozit Restoratif Materyalin Mikrosertlik Ve Bis-GMA salımı yönünden değerlendirilmesi”. Acta Odontologica Turcica 37, no. 1 (January 2020): 18-23. https://doi.org/10.17214/gaziaot.599405.
EndNote Bek Kürklü ZG, Kalkan Deveci C (January 1, 2020) Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi. Acta Odontologica Turcica 37 1 18–23.
IEEE Z. G. Bek Kürklü and C. Kalkan Deveci, “Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi”, Acta Odontol Turc, vol. 37, no. 1, pp. 18–23, 2020, doi: 10.17214/gaziaot.599405.
ISNAD Bek Kürklü, Zeliha Gonca - Kalkan Deveci, Ceren. “Yeni Bir Kompozit Restoratif Materyalin Mikrosertlik Ve Bis-GMA salımı yönünden değerlendirilmesi”. Acta Odontologica Turcica 37/1 (January 2020), 18-23. https://doi.org/10.17214/gaziaot.599405.
JAMA Bek Kürklü ZG, Kalkan Deveci C. Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi. Acta Odontol Turc. 2020;37:18–23.
MLA Bek Kürklü, Zeliha Gonca and Ceren Kalkan Deveci. “Yeni Bir Kompozit Restoratif Materyalin Mikrosertlik Ve Bis-GMA salımı yönünden değerlendirilmesi”. Acta Odontologica Turcica, vol. 37, no. 1, 2020, pp. 18-23, doi:10.17214/gaziaot.599405.
Vancouver Bek Kürklü ZG, Kalkan Deveci C. Yeni bir kompozit restoratif materyalin mikrosertlik ve Bis-GMA salımı yönünden değerlendirilmesi. Acta Odontol Turc. 2020;37(1):18-23.