Review
BibTex RIS Cite

Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri

Year 2013, Volume: 30 Issue: 2, 99 - 109, 01.07.2013

Abstract

Bugün diş çürüğünden korunmada kaydedilen modern ilerlemelere ve doğal dişlenmeyi korumanın öneminin artarak idrak edilmesine rağmen, özellikle süt dişleri olmak üzere halen birçok diş erken kaybedilmektedir. Bu kayıplar maloklüzyona yol açabilmekte veya geçici ya da kalıcı olabilen estetik, fonetik ve fonksiyonel problemler oluşturabilmektedir. Oral dokuların devamlılığının ve sağlığının korunması pulpa tedavilerinin birincil hedefidir. Pulpa vücuttaki diğer gevşek bağ dokularına benzemekle birlikte bazı açılardan farklılık göstermektedir. Süt dişi dentin kalınlığının sürekli dişlere oranla daha az olması, dentin tübüllerinin daha geniş olması, dentin içinde geniş kanallar bulunması nedeniyle dentin geçirgenliğinin fazla olması ve kök rezorpsiyonu ile birlikte vasküler, hücresel ve nörolojik yapıda değişiklikler göstermesi bakımından sürekli dişlerin dentin ve pulpa yapısından farklılık gösterirler. Süt dişlerinde bu farklılıkların bilinmesi, pulpa patolojilerinin doğru analiz edilmesi ve pulpa hastalıklarında uygulanacak tedavi yönteminin doğru belirlenebilmesi için gereklidir.

References

  • Hobson P. Pulp treatment of deciduous teeth. 1. Factors affecting diagnosis and treatment. Br Dent J 1970;128:232-8.
  • Camp JH, Fuks AB. Pediatric endodontics: Endodontic treatment for the primary and young permanent dentition. Cohen S, Hargreaves KM, eds. Pathways of the pulp. 9th edn. St.Louis: Mosby Elsevier; 2006. p. 834-59.
  • Pashley DH, Liewehr FR. Structure and functions of the dentin- pulp complex. Cohen S, Hargreaves KM, eds. Pathways of the pulp. 9th edn. St.Louis: Mosby Elsevier; 2006. p. 460-513.
  • Goldberg M, Lasfargues JJ. Pulpo-dentinal complex revisited. J Dent 1995;23:15-20.
  • Pashley DH. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med 1996;7:104-33.
  • Pashley DH. Pulpodentin complex. Hargreaves KM, Goodis HE, Seltzer S, eds. Seltzer and Bender’s dental pulp. 1st edn. Chicago: Quintessence Pub. Co.; 2002. p.63-94.
  • Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 1993;25:781-806.
  • Sumikawa DA, Marshall GW, Gee L, Marshall SJ. Microstructure of primary tooth dentin. Pediatr Dent 1999;21:439-44.
  • Mjör IA, Sveen OB, Heyeraas KJ. Pulp-dentin biology in restorative dentistry. Part 1: normal structure and physiology. Quintessence Int 2001;32:427-46.
  • Embery G, Hall R, Waddington R, Septier D, Goldberg M. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 2001;12:331-49.
  • Fox AG, Heeley JD. Histological study of pulps of human primary teeth. Arch Oral Biol 1980;25:103-10.
  • Isokawa S, Kosakai T, Kajiyama S. Interglobular dentin in the deciduous tooth. J Dent Res 1963;42:831-4.
  • Garberoglio R, Brännström M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol 1976;21:355-62.
  • Koutsi V, Noonan RG, Horner JA, Simpson MD, Matthews WG, Pashley DH. The effect of dentin depth on the permeability and ultrastructure of primary molars. Pediatr Dent 1994;16:29-35.
  • Hirayama A, Yamada M, Miake K. Analytical electron microscopic studies on the dentinal tubules of human primary teeth. J Dent Res 1985;64:743-65.
  • Asakawa T, Manabe A, Itoh K, Inoue M, Hisamitu H, Sasa R. Efficacy of dentin adhesives in primary and permanent teeth. J Clin Pediatr Dent 2001;25:231-6.
  • Agostini FG, Kaaden C, Powers JM. Bond strength of self-etching primers to enamel and dentin of primary teeth. Pediatr Dent 2001;23:481-6.
  • Agematsu H, Abe S, Shiozaki K, Usami A, Ogata S, Suzuki K, et al. Relationship between large tubules and dentin caries in human deciduous tooth. Bull Tokyo Dent Coll 2005;46:7-15.
  • Kinney JH, Balooch M, Marshall SJ, Marshall GW Jr, Weihs TP. Hardness and Young's modulus of human peritubular and intertubular dentine. Arch Oral Biol 1996;41:9-13.
  • Kinney JH, Balooch M, Marshall GW, Marshall SJ. A micromechanics model of the elastic properties of human dentine Arch Oral Biol 1999;44:813-22.
  • Coffey CT, Ingram MJ, Bjorndal AM. Analysis of human dentinal fluid. Oral Surg Oral Med Oral Pathol 1970;30:835-7.
  • Smulson M, Sieraski SM. Histopathology and diases of the dental pulp. Weine FS, ed. Endodontic therapy. St. Louis: The C.V. Mosby Company; 1989. p.74-153.
  • Matthews B, Vongsavan N. Interactions between neural and hydrodynamic mechanisms in dentine and pulp. Arch Oral Biol 1994;39:87S-95S.
  • Itthagarun A, Tay FR. Self-contamination of deep dentin by dentin fluid. Am J Dent 2000;13:195-200.
  • Braennströem M, Astroem A. A study on the mechanism of pain elicited from the dentin. J Dent Res 1964;43:619-25.
  • Brännström M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 1984;9:57-68.
  • Trowbridge HO. Pathogenesis of pulpitis resulting from dental caries. J Endod 1981;7:52-60.
  • Dai XF, Ten Cate AR, Limeback H. The extent and distribution of intratubular collagen fibrils in human dentine. Arch Oral Biol 1991;36:775-8.
  • Michelich VJ, Schuster GS, Pashley DH. Bacterial penetration of human dentin in vitro. J Dent Res 1980;59:1398-403.
  • Michelich V, Pashley DH, Whitford GM. Dentin permeability: a comparison of functional versus anatomical tubular radii. J Dent Res 1978;57:1019-24.
  • Hahn CL, Overton B. The effects of immunoglobulins on the convective permeability of human dentine in vitro. Arch Oral Biol 1997;42:835-43.
  • Nagaoka S, Miyazaki Y, Liu HJ, Iwamoto Y, Kitano M, Kawagoe M. Bacterial invasion into dentinal tubules of human vital and nonvital teeth. J Endod 1995;21:70-3.
  • Weinstock M, Leblond CP. Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol 1974;60:92-127.
  • Linde A. The extracellular matrix of the dental pulp and dentin. J Dent Res 1985;64:523-9.
  • D'Souza RN, Bachman T, Baumgardner KR, Butler WT, Litz M. Characterization of cellular responses involved in reparative dentinogenesis in rat molars. J Dent Res 1995;74:702-9.
  • Gotjamanos T. Cellular organization in the subodontoblastic zone of the dental pulp. II. Period and mode of development of the cell-rich layer in rat molar pulps. Arch Oral Biol 1969;14:1011-9.
  • Murray PE, About I, Lumley PJ, Franquin JC, Remusat M, Smith AJ. Human odontoblast cell numbers after dental injury. J Dent 2000;28:277-85.
  • Murray PE, Hafez AA, Windsor LJ, Smith AJ, Cox CF. Comparison of pulp responses following restoration of exposed and non-exposed cavities. J Dent 2002;30:213-22.
  • Marion D, Jean A, Hamel H, Kerebel LM, Kerebel B. Scanning electron microscopic study of odontoblasts and circumpulpal dentin in a human tooth. Oral Surg Oral Med Oral Pathol 1991;72:473-8.
  • Bishop MA, Yoshida S. A permeability barrier to lanthanum and the presence of collagen between odontoblasts in pig molars. J Anat 1992;181:29-38.
  • Okiji T. Pulp as a connective tissue. Hargreaves KM, Goodis HE, eds. Seltzer and Bender’s Dental Pulp. 1st edn. Chicago, IL: Quintessence; 2002. p.95-122.
  • Mjör IA, Sveen OB, Heyeraas KJ. Normal structure and physiology. Mjör IA, ed. Pulp-Dentin Biology in Restorative Dentistry. Chicago:Quintessence Pub; 2002. p. 1-22.
  • Holland GR. The odontoblast process: form and function. J Dent Res 1985;64Spec No:499-514.
  • Grossman ES, Austin JC. Scanning electron microscope observations on the tubule content of freeze-fractured peripheral vervet monkey dentine (Cercopithecus pygerythrus). Arch Oral Biol 1983;28:279-81.
  • Yamada T, Nakamura K, Iwaku M, Fusayama T. The extent of the odontoblast process in normal and carious human dentin. J Dent Res 1983;62:798-802.
  • Weber DF, Zaki AE. Scanning and transmission electron microscopy of tubular structures presumed to be human odontoblast processes. J Dent Res 1986;65:982-6.
  • Byers MR, Sugaya A. Odontoblast processes in dentin revealed by fluorescent Di-I. J Histochem Cytochem 1995;43:159-68.
  • Dard M, Kerebel LM, Kerebel B. A transmission electron microscope study of fibroblast changes in human deciduous tooth pulp. Arch Oral Biol 1989;34:223-8.
  • Greeley MCB. Pulp therapy for the primary and the young permanent dentition. Forrester DC, Wagner ML, Fleming J, eds. Pediatric Dental Medicine. 1st edn. Philadelphia: Lea & Febiger; 1981. p.456-60.
  • Okiji T, Kawashima N, Kosaka T, Matsumoto A, Kobayashi C, Suda H. An immunohistochemical study of the distribution of immunocompetent cells, especially macrophages and Ia antigen-expressing cells of heterogeneous populations, in normal rat molar pulp. J Dent Res 1992;71:1196-202.
  • Sakurai K, Okiji T, Suda H. Co-increase of nerve fibers and HLADR-and/or factor-XIIIa-expressing dendritic cells in dentinal caries-affected regions of the human dental pulp: an immunohistochemical study. J Dent Res 1999;78:1596-608.
  • Hahn CL, Falkler WA Jr, Siegel MA. A study of T and B cells in pulpal pathosis. J Endod 1989;15:20-6.
  • Jontell M, Okiji T, Dahlgren U, Bergenholtz G. Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med 1998;9:179-200.
  • Rapp R, el-Labban NG, Kramer IR, Wood D. Ultrastructure of fenestrated capillaries in human dental pulps. Arch Oral Biol 1977;22:317-9.
  • Mangkornkarn C, Steiner JC. In vivo and in vitro glycosaminoglycans from human dental pulp. J Endod 1992;18:327-31.
  • Gloe T, Pohl U. Laminin binding conveys mechanosensing in endothelial cells. News Physiol Sci 2002;17:166-9.
  • Rapp R. Vascular pathways within pulpal tissue of human primary teeth. J Clin Pediatr Dent 1992;16:183-201.
  • Kim S, Schuessler G, Chien S. Measurement of blood flow in the dental pulp of dogs with the 133xenon washout method. Arch Oral Biol 1983;28:501-5.
  • Meyer MW, Path MG. Blood flow in the dental pulp of dogs determined by hydrogen polarography and radioactive microsphere methods. Arch Oral Biol 1979;24:601-5.
  • Takahashi K, Kishi Y, Kim S. A scanning electron microscope study of the blood vessels of dog pulp using corrosion resin casts. J Endod 1982;8:131-5.
  • Byers MR, Taylor PE. Effect of sensory denervation on the response of rat molar pulp to exposure injury. J Dent Res 1993;72:613-8.
  • Edwall L, Kindlová M. The effect of sympathetic nerve stimulation on the rate of disappearance of tracers from various oral tissues. Acta Odontol Scand 1971;29:387-400.
  • Reader A, Foreman DW. An ultrastructural qualitative investigation of human intradental innervation. J Endod 1981;7:161-8.
  • Gunji T. Morphological research on the sensitivity of dentin. Arch Histol Jpn 1982 ;45:45-67.
  • Avery JK. Structural elements of the young normal human pulp. Oral Surg Oral Med Oral Pathol 1971;32:113-25.
  • Rodd HD, Boissonade FM. Innervation of human tooth pulp in relation to caries and dentition type. J Dent Res 200;80:389-93.
  • Suda H, Ikeda H. The circulation of the pulp. Hargreaves KM, Goodis HE, eds. Seltzer and Bender’s Dental Pulp.1st edn. Chicago: Quintessence; 2002. p.123-50.
  • Olgart L, Gazelius B, Brodin E, Nilsson G. Release of substance Plike immunoreactivity from the dental pulp. Acta Physiol Scand 1977;101:510-2.
  • Trantor IR, Messer HH, Birner R. The effects of neuropeptides (calcitonin gene-related peptide and substance P) on cultured human pulp cells. J Dent Res 1995;74:1066-71.
  • Kim S. Neurovascular interactions in the dental pulp in health and inflammation. J Endod 1990;16:48-53.
  • Bernick S, Nedelman C. Effect of aging on the human pulp. J Endod 1975;1:88-94.
  • Torneck CD, Torabinejad M. Biology of the dental pulp and periradicular tissues. Walton RE, Torabinejad M, eds. Principle and practice of endodontics. 1st edn. Philadelphia: WB. Saunders Sydney Co; 2002. p.3-26.
  • Fisher AK. Respiratory variations within the normal dental pulp. J Dent Res 1967;46:424-8.
  • Fisher AK, Schumacher ER, Robinson NR, Sharbondy GP. Effects of dental drugs and materials on the rate of oxygen consumption in bovine dental pulp. J Dent Res 1957;36:447-50.
  • Fisher AK, Walters VE. Anaerobic glycolysis in bovine dental pulp. J Dent Res 1968;47:717-9.
  • Kim S, Edwall L, Trowbridge H, Chien S. Effects of local anesthetics on pulpal blood flow in dogs. J Dent Res 1984;63:650-2.
  • Sicher H. Shedding of the deciduous teeth. Sicher H, ed. Orban’s oral histology and embriology. 1st edn. St.Louis: The C.V. Mosby Co.; 1966. p. 320-3.
  • Kronfeld R. The resorption of the roots of deciduous teeth. Dent Cosmos 1932; 74:103-20.
  • Prove SA, Symons AL, Meyers IA. Physiological root resorption of primary molars. J Clin Pediatr Dent 1992;16:202-6.
  • Marks SC Jr, Cahill DR. Experimental study in the dog of the nonactive role of the tooth in the eruptive process. Arch Oral Biol 1984;29:311-22.
  • Cahill DR. Eruption pathway formation in the presence of experimental tooth impaction in puppies. Anat Rec 1969;164:67-77.
  • Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci 2007;49:1-12.
  • Alexander SA. Collagenolytic activity from human deciduous pulps. J Endod 1981;7:418-20.
  • Aras Ş, Ergun E. Fizyolojik kök rezorpsiyonu esnasında süt dişlerinin pulpa ve kök dokularının histolojik olarak incelenmesi. A Ü Diş Hek Fak Derg 1983;10:57-67.
  • Mejare I. Endodontics in primary teeth. Bergenholtz G, HorstedBindslev T, Reit C, eds. Textbook of endodontology. 2nd edn. Hong Kong: Blackwell publishing Co; 2003. p.92-108.
  • Sari S, Aras S, Gunhan O. The effect of physiological root resorption on the histological structure of primary tooth pulp. J Clin Pediatr Dent 1999;23:221-5.
  • Troutman KC, Reisbick MH. Pulp therapy. Stewart RE, Barber TK, Troutman KC, Wei SHY, eds. Pediatric dentistry. Scientific foundations and clinical practice. 1st edn. Toronto, Ontario: Mosby Company; 1982. p.908-17.
  • Furseth R. The resorption processes of human deciduous teeth studied by light microscopy, microradiography and electron microscopy. Arch Oral Biol 1968;13:417-31.
  • Sahara N, Okafuji N, Toyoki A, Suzuki I, Deguchi T, Suzuki K. Odontoclastic resorption at the pulpal surface of coronal dentin prior to the shedding of human deciduous teeth. Arch Histol Cytol 1992;55:273-85.

Histologic properties of the pulp and dentin in primary teeth

Year 2013, Volume: 30 Issue: 2, 99 - 109, 01.07.2013

Abstract

Many teeth, especially the primary teeth are lost prematurely despite advancements in the prevention of dental caries and increasing recognition of the importance of natural dentition. These losses may lead to malocclusion or temporary or permanent esthetic, phonetic and functional problems. Preservation of the integrity and health of oral tissues is the main target in dental pulp treatments. Although the dental pulp is similar to other loose connective tissues of the body, it differs in some ways. The dentin and the pulp structure in primary teeth are somewhat different from those found in permanent teeth. For example dentin permeability in primary teeth is greater due to a thinner dentin structure, wider dentinal tubules and presence of wide canals in the dentin. Also changes in the vascular, cellular and neurologic components occur in the pulp of the deciduous tooth as a result of physiologic root resorption, a phenomenon which renders the histological picture different between primary and permanent tooth pulps. Recognition of these differences is crucial for accurate analysis of pulpal diseases and determining treatment modalities.

References

  • Hobson P. Pulp treatment of deciduous teeth. 1. Factors affecting diagnosis and treatment. Br Dent J 1970;128:232-8.
  • Camp JH, Fuks AB. Pediatric endodontics: Endodontic treatment for the primary and young permanent dentition. Cohen S, Hargreaves KM, eds. Pathways of the pulp. 9th edn. St.Louis: Mosby Elsevier; 2006. p. 834-59.
  • Pashley DH, Liewehr FR. Structure and functions of the dentin- pulp complex. Cohen S, Hargreaves KM, eds. Pathways of the pulp. 9th edn. St.Louis: Mosby Elsevier; 2006. p. 460-513.
  • Goldberg M, Lasfargues JJ. Pulpo-dentinal complex revisited. J Dent 1995;23:15-20.
  • Pashley DH. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med 1996;7:104-33.
  • Pashley DH. Pulpodentin complex. Hargreaves KM, Goodis HE, Seltzer S, eds. Seltzer and Bender’s dental pulp. 1st edn. Chicago: Quintessence Pub. Co.; 2002. p.63-94.
  • Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 1993;25:781-806.
  • Sumikawa DA, Marshall GW, Gee L, Marshall SJ. Microstructure of primary tooth dentin. Pediatr Dent 1999;21:439-44.
  • Mjör IA, Sveen OB, Heyeraas KJ. Pulp-dentin biology in restorative dentistry. Part 1: normal structure and physiology. Quintessence Int 2001;32:427-46.
  • Embery G, Hall R, Waddington R, Septier D, Goldberg M. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 2001;12:331-49.
  • Fox AG, Heeley JD. Histological study of pulps of human primary teeth. Arch Oral Biol 1980;25:103-10.
  • Isokawa S, Kosakai T, Kajiyama S. Interglobular dentin in the deciduous tooth. J Dent Res 1963;42:831-4.
  • Garberoglio R, Brännström M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol 1976;21:355-62.
  • Koutsi V, Noonan RG, Horner JA, Simpson MD, Matthews WG, Pashley DH. The effect of dentin depth on the permeability and ultrastructure of primary molars. Pediatr Dent 1994;16:29-35.
  • Hirayama A, Yamada M, Miake K. Analytical electron microscopic studies on the dentinal tubules of human primary teeth. J Dent Res 1985;64:743-65.
  • Asakawa T, Manabe A, Itoh K, Inoue M, Hisamitu H, Sasa R. Efficacy of dentin adhesives in primary and permanent teeth. J Clin Pediatr Dent 2001;25:231-6.
  • Agostini FG, Kaaden C, Powers JM. Bond strength of self-etching primers to enamel and dentin of primary teeth. Pediatr Dent 2001;23:481-6.
  • Agematsu H, Abe S, Shiozaki K, Usami A, Ogata S, Suzuki K, et al. Relationship between large tubules and dentin caries in human deciduous tooth. Bull Tokyo Dent Coll 2005;46:7-15.
  • Kinney JH, Balooch M, Marshall SJ, Marshall GW Jr, Weihs TP. Hardness and Young's modulus of human peritubular and intertubular dentine. Arch Oral Biol 1996;41:9-13.
  • Kinney JH, Balooch M, Marshall GW, Marshall SJ. A micromechanics model of the elastic properties of human dentine Arch Oral Biol 1999;44:813-22.
  • Coffey CT, Ingram MJ, Bjorndal AM. Analysis of human dentinal fluid. Oral Surg Oral Med Oral Pathol 1970;30:835-7.
  • Smulson M, Sieraski SM. Histopathology and diases of the dental pulp. Weine FS, ed. Endodontic therapy. St. Louis: The C.V. Mosby Company; 1989. p.74-153.
  • Matthews B, Vongsavan N. Interactions between neural and hydrodynamic mechanisms in dentine and pulp. Arch Oral Biol 1994;39:87S-95S.
  • Itthagarun A, Tay FR. Self-contamination of deep dentin by dentin fluid. Am J Dent 2000;13:195-200.
  • Braennströem M, Astroem A. A study on the mechanism of pain elicited from the dentin. J Dent Res 1964;43:619-25.
  • Brännström M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 1984;9:57-68.
  • Trowbridge HO. Pathogenesis of pulpitis resulting from dental caries. J Endod 1981;7:52-60.
  • Dai XF, Ten Cate AR, Limeback H. The extent and distribution of intratubular collagen fibrils in human dentine. Arch Oral Biol 1991;36:775-8.
  • Michelich VJ, Schuster GS, Pashley DH. Bacterial penetration of human dentin in vitro. J Dent Res 1980;59:1398-403.
  • Michelich V, Pashley DH, Whitford GM. Dentin permeability: a comparison of functional versus anatomical tubular radii. J Dent Res 1978;57:1019-24.
  • Hahn CL, Overton B. The effects of immunoglobulins on the convective permeability of human dentine in vitro. Arch Oral Biol 1997;42:835-43.
  • Nagaoka S, Miyazaki Y, Liu HJ, Iwamoto Y, Kitano M, Kawagoe M. Bacterial invasion into dentinal tubules of human vital and nonvital teeth. J Endod 1995;21:70-3.
  • Weinstock M, Leblond CP. Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol 1974;60:92-127.
  • Linde A. The extracellular matrix of the dental pulp and dentin. J Dent Res 1985;64:523-9.
  • D'Souza RN, Bachman T, Baumgardner KR, Butler WT, Litz M. Characterization of cellular responses involved in reparative dentinogenesis in rat molars. J Dent Res 1995;74:702-9.
  • Gotjamanos T. Cellular organization in the subodontoblastic zone of the dental pulp. II. Period and mode of development of the cell-rich layer in rat molar pulps. Arch Oral Biol 1969;14:1011-9.
  • Murray PE, About I, Lumley PJ, Franquin JC, Remusat M, Smith AJ. Human odontoblast cell numbers after dental injury. J Dent 2000;28:277-85.
  • Murray PE, Hafez AA, Windsor LJ, Smith AJ, Cox CF. Comparison of pulp responses following restoration of exposed and non-exposed cavities. J Dent 2002;30:213-22.
  • Marion D, Jean A, Hamel H, Kerebel LM, Kerebel B. Scanning electron microscopic study of odontoblasts and circumpulpal dentin in a human tooth. Oral Surg Oral Med Oral Pathol 1991;72:473-8.
  • Bishop MA, Yoshida S. A permeability barrier to lanthanum and the presence of collagen between odontoblasts in pig molars. J Anat 1992;181:29-38.
  • Okiji T. Pulp as a connective tissue. Hargreaves KM, Goodis HE, eds. Seltzer and Bender’s Dental Pulp. 1st edn. Chicago, IL: Quintessence; 2002. p.95-122.
  • Mjör IA, Sveen OB, Heyeraas KJ. Normal structure and physiology. Mjör IA, ed. Pulp-Dentin Biology in Restorative Dentistry. Chicago:Quintessence Pub; 2002. p. 1-22.
  • Holland GR. The odontoblast process: form and function. J Dent Res 1985;64Spec No:499-514.
  • Grossman ES, Austin JC. Scanning electron microscope observations on the tubule content of freeze-fractured peripheral vervet monkey dentine (Cercopithecus pygerythrus). Arch Oral Biol 1983;28:279-81.
  • Yamada T, Nakamura K, Iwaku M, Fusayama T. The extent of the odontoblast process in normal and carious human dentin. J Dent Res 1983;62:798-802.
  • Weber DF, Zaki AE. Scanning and transmission electron microscopy of tubular structures presumed to be human odontoblast processes. J Dent Res 1986;65:982-6.
  • Byers MR, Sugaya A. Odontoblast processes in dentin revealed by fluorescent Di-I. J Histochem Cytochem 1995;43:159-68.
  • Dard M, Kerebel LM, Kerebel B. A transmission electron microscope study of fibroblast changes in human deciduous tooth pulp. Arch Oral Biol 1989;34:223-8.
  • Greeley MCB. Pulp therapy for the primary and the young permanent dentition. Forrester DC, Wagner ML, Fleming J, eds. Pediatric Dental Medicine. 1st edn. Philadelphia: Lea & Febiger; 1981. p.456-60.
  • Okiji T, Kawashima N, Kosaka T, Matsumoto A, Kobayashi C, Suda H. An immunohistochemical study of the distribution of immunocompetent cells, especially macrophages and Ia antigen-expressing cells of heterogeneous populations, in normal rat molar pulp. J Dent Res 1992;71:1196-202.
  • Sakurai K, Okiji T, Suda H. Co-increase of nerve fibers and HLADR-and/or factor-XIIIa-expressing dendritic cells in dentinal caries-affected regions of the human dental pulp: an immunohistochemical study. J Dent Res 1999;78:1596-608.
  • Hahn CL, Falkler WA Jr, Siegel MA. A study of T and B cells in pulpal pathosis. J Endod 1989;15:20-6.
  • Jontell M, Okiji T, Dahlgren U, Bergenholtz G. Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med 1998;9:179-200.
  • Rapp R, el-Labban NG, Kramer IR, Wood D. Ultrastructure of fenestrated capillaries in human dental pulps. Arch Oral Biol 1977;22:317-9.
  • Mangkornkarn C, Steiner JC. In vivo and in vitro glycosaminoglycans from human dental pulp. J Endod 1992;18:327-31.
  • Gloe T, Pohl U. Laminin binding conveys mechanosensing in endothelial cells. News Physiol Sci 2002;17:166-9.
  • Rapp R. Vascular pathways within pulpal tissue of human primary teeth. J Clin Pediatr Dent 1992;16:183-201.
  • Kim S, Schuessler G, Chien S. Measurement of blood flow in the dental pulp of dogs with the 133xenon washout method. Arch Oral Biol 1983;28:501-5.
  • Meyer MW, Path MG. Blood flow in the dental pulp of dogs determined by hydrogen polarography and radioactive microsphere methods. Arch Oral Biol 1979;24:601-5.
  • Takahashi K, Kishi Y, Kim S. A scanning electron microscope study of the blood vessels of dog pulp using corrosion resin casts. J Endod 1982;8:131-5.
  • Byers MR, Taylor PE. Effect of sensory denervation on the response of rat molar pulp to exposure injury. J Dent Res 1993;72:613-8.
  • Edwall L, Kindlová M. The effect of sympathetic nerve stimulation on the rate of disappearance of tracers from various oral tissues. Acta Odontol Scand 1971;29:387-400.
  • Reader A, Foreman DW. An ultrastructural qualitative investigation of human intradental innervation. J Endod 1981;7:161-8.
  • Gunji T. Morphological research on the sensitivity of dentin. Arch Histol Jpn 1982 ;45:45-67.
  • Avery JK. Structural elements of the young normal human pulp. Oral Surg Oral Med Oral Pathol 1971;32:113-25.
  • Rodd HD, Boissonade FM. Innervation of human tooth pulp in relation to caries and dentition type. J Dent Res 200;80:389-93.
  • Suda H, Ikeda H. The circulation of the pulp. Hargreaves KM, Goodis HE, eds. Seltzer and Bender’s Dental Pulp.1st edn. Chicago: Quintessence; 2002. p.123-50.
  • Olgart L, Gazelius B, Brodin E, Nilsson G. Release of substance Plike immunoreactivity from the dental pulp. Acta Physiol Scand 1977;101:510-2.
  • Trantor IR, Messer HH, Birner R. The effects of neuropeptides (calcitonin gene-related peptide and substance P) on cultured human pulp cells. J Dent Res 1995;74:1066-71.
  • Kim S. Neurovascular interactions in the dental pulp in health and inflammation. J Endod 1990;16:48-53.
  • Bernick S, Nedelman C. Effect of aging on the human pulp. J Endod 1975;1:88-94.
  • Torneck CD, Torabinejad M. Biology of the dental pulp and periradicular tissues. Walton RE, Torabinejad M, eds. Principle and practice of endodontics. 1st edn. Philadelphia: WB. Saunders Sydney Co; 2002. p.3-26.
  • Fisher AK. Respiratory variations within the normal dental pulp. J Dent Res 1967;46:424-8.
  • Fisher AK, Schumacher ER, Robinson NR, Sharbondy GP. Effects of dental drugs and materials on the rate of oxygen consumption in bovine dental pulp. J Dent Res 1957;36:447-50.
  • Fisher AK, Walters VE. Anaerobic glycolysis in bovine dental pulp. J Dent Res 1968;47:717-9.
  • Kim S, Edwall L, Trowbridge H, Chien S. Effects of local anesthetics on pulpal blood flow in dogs. J Dent Res 1984;63:650-2.
  • Sicher H. Shedding of the deciduous teeth. Sicher H, ed. Orban’s oral histology and embriology. 1st edn. St.Louis: The C.V. Mosby Co.; 1966. p. 320-3.
  • Kronfeld R. The resorption of the roots of deciduous teeth. Dent Cosmos 1932; 74:103-20.
  • Prove SA, Symons AL, Meyers IA. Physiological root resorption of primary molars. J Clin Pediatr Dent 1992;16:202-6.
  • Marks SC Jr, Cahill DR. Experimental study in the dog of the nonactive role of the tooth in the eruptive process. Arch Oral Biol 1984;29:311-22.
  • Cahill DR. Eruption pathway formation in the presence of experimental tooth impaction in puppies. Anat Rec 1969;164:67-77.
  • Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci 2007;49:1-12.
  • Alexander SA. Collagenolytic activity from human deciduous pulps. J Endod 1981;7:418-20.
  • Aras Ş, Ergun E. Fizyolojik kök rezorpsiyonu esnasında süt dişlerinin pulpa ve kök dokularının histolojik olarak incelenmesi. A Ü Diş Hek Fak Derg 1983;10:57-67.
  • Mejare I. Endodontics in primary teeth. Bergenholtz G, HorstedBindslev T, Reit C, eds. Textbook of endodontology. 2nd edn. Hong Kong: Blackwell publishing Co; 2003. p.92-108.
  • Sari S, Aras S, Gunhan O. The effect of physiological root resorption on the histological structure of primary tooth pulp. J Clin Pediatr Dent 1999;23:221-5.
  • Troutman KC, Reisbick MH. Pulp therapy. Stewart RE, Barber TK, Troutman KC, Wei SHY, eds. Pediatric dentistry. Scientific foundations and clinical practice. 1st edn. Toronto, Ontario: Mosby Company; 1982. p.908-17.
  • Furseth R. The resorption processes of human deciduous teeth studied by light microscopy, microradiography and electron microscopy. Arch Oral Biol 1968;13:417-31.
  • Sahara N, Okafuji N, Toyoki A, Suzuki I, Deguchi T, Suzuki K. Odontoclastic resorption at the pulpal surface of coronal dentin prior to the shedding of human deciduous teeth. Arch Histol Cytol 1992;55:273-85.
There are 89 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review Article
Authors

Gözdem Özçobanoğlu This is me

Leyla Durutürk This is me

Publication Date July 1, 2013
Published in Issue Year 2013 Volume: 30 Issue: 2

Cite

APA Özçobanoğlu, G., & Durutürk, L. (2013). Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri. Acta Odontologica Turcica, 30(2), 99-109.
AMA Özçobanoğlu G, Durutürk L. Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri. Acta Odontol Turc. June 2013;30(2):99-109.
Chicago Özçobanoğlu, Gözdem, and Leyla Durutürk. “Süt dişlerinde Pulpa Ve Dentinin Histolojik yapısal özellikleri”. Acta Odontologica Turcica 30, no. 2 (June 2013): 99-109.
EndNote Özçobanoğlu G, Durutürk L (June 1, 2013) Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri. Acta Odontologica Turcica 30 2 99–109.
IEEE G. Özçobanoğlu and L. Durutürk, “Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri”, Acta Odontol Turc, vol. 30, no. 2, pp. 99–109, 2013.
ISNAD Özçobanoğlu, Gözdem - Durutürk, Leyla. “Süt dişlerinde Pulpa Ve Dentinin Histolojik yapısal özellikleri”. Acta Odontologica Turcica 30/2 (June 2013), 99-109.
JAMA Özçobanoğlu G, Durutürk L. Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri. Acta Odontol Turc. 2013;30:99–109.
MLA Özçobanoğlu, Gözdem and Leyla Durutürk. “Süt dişlerinde Pulpa Ve Dentinin Histolojik yapısal özellikleri”. Acta Odontologica Turcica, vol. 30, no. 2, 2013, pp. 99-109.
Vancouver Özçobanoğlu G, Durutürk L. Süt dişlerinde pulpa ve dentinin histolojik yapısal özellikleri. Acta Odontol Turc. 2013;30(2):99-109.