Research Article
BibTex RIS Cite

Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique

Year 2015, Volume: 32 Issue: 2, 57 - 62, 21.04.2015
https://doi.org/10.17214/aot.92891

Abstract

OBJECTIVE: To evaluate the temperature changes on the external root surfaces of mandibular premolar teeth during ultrasonic condensation of gutta-percha in the root canal.

MATERIALS AND METHOD: Ten extracted mandibular premolar teeth were selected. The roots were cut to a uniform length of14 mm. Root canal treatments were performed using the ProTaper system, and the master apical file was a ProTaper F3 instrument. After the root canal preparations, cone-beam computed tomography images were taken to detect the thinnest dentinal area on the root. Each root was embedded in acrylic plates. For temperature measurements, the specimens were placed in a stainless steel device that was specially designed for this study. Temperature changes during obturation (warm lateral condensation using ultrasonics as the experimental group and cold lateral condensation as control) were then recorded using a thermal camera. Unpaired ttest was performed using a statistical software (α=0.01).

RESULTS: There were significant differences between the groups. The mean obturation times of the specimens were 232.8 s for the experimental group and 102.5 s for the control. The mean value of the temperature increase in the experimental group was 49.96±11.12 °C; and no temperature increase was recorded for control group. The maximum temperature rises was 68.9 °C, and the minimum was 35.9 °C. The average cooling time of all samples were 17 s and did not exceed 1 min.

CONCLUSION: High temperatures that may cause hazardous effects on periodontium were observed; however, average cooling times of the samples were in normal ranges (less than 1 min). Further investigations are needed for testing different power settings. 

References

  • 1. Smith CS, Setchell DJ, Harty FJ. Factors influencing the success of conventional root canal therapy--a five-year retrospective study. Int Endod J 1993;26:321-33.
  • 2. Wolf M, Küpper K, Reimann S, Bourauel C, Frentzen M. 3D analyses of interface voids in root canals filled with different sealer materials in combination with warm gutta-percha technique. Clin Oral Investig 2014;18:155-61.
  • 3. Brayton SM, Davis SR, Goldman M. Gutta-percha root canal fillings. An in vitro analysis. Oral Surg Oral Med Oral Pathol 1973;35:226-31.
  • 4. Deitch AK, Liewehr FR, West LA, Patton WR. A comparison of fill density obtained by supplementing cold lateral condensation with ultrasonic condensation. J Endod 2002;28:665-7.
  • 5. Bailey GC, Ng YL, Cunnington SA, Barber P, Gulabivala K, Setchell DJ. Root canal obturation by ultrasonic condensation of gutta-percha. Part II: an in vitro investigation of the quality of obturation. Int Endod J 2004;37:694-8.
  • 6. Yancich PP, Hartwell GR, Portell FR. A comparison of apical seal: chloroform versus eucalyptol-dipped gutta-percha obturation. J Endod 1989;15:257-60.
  • 7. Ozcan E, Eldeniz AÜ, Aydinbelge HA. Assessment of the sealing abilities of several root canal sealers and filling methods. Acta Odontol Scand 2013;71:1362-9.
  • 8. Re Cecconi D, Grassi M, Tortini D, Brambilla E, Gagliani MM. Efficacy of ultrasonic vibration in warm gutta-percha vertical compaction. Minerva Stomatol 2012;61:75-82.
  • 9. Soulie J. [Technic for canal filling using ultrasound]. Actual Odontostomatol (Paris) 1975;112:591-600.
  • 10. Baumgardner KR, Krell KV. Ultrasonic condensation of gutta-percha: an in vitro dye penetration and scanning electron microscopic study. J Endod 1990;16:253-9.
  • 11. Eriksson AR, Albrektsson T. Temperature threshold levels for heatinduced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-7.
  • 12. Hardie EM. Further studies on heat generation during obturation techniques involving thermally softened gutta-percha. Int Endod J 1987;20:122-7.
  • 13. Saunders EM. In vivo findings associated with heat generation during thermomechanical compaction of gutta-percha. 2. Histological response to temperature elevation on the external surface of the root. Int Endod J 1990;23:268-74.
  • 14. Bailey GC, Cunnington SA, Ng YL, Gulabivala K, Setchell DJ. Ultrasonic condensation of gutta-percha: the effect of power setting and activation time on temperature rise at the root surface - an in vitro study. Int Endod J 2004;37:447-54.
  • 15. Mc Cullagh JJ, Setchell DJ, Gulabivala K, Hussey DL, Biagioni P, Lamey PJ, et al. A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. Int Endod J 2000;33:326-32.
  • 16. Biagioni PA, Longmore RB, McGimpsey JG, Lamey PJ. Infrared thermography. Its role in dental research with particular reference to craniomandibular disorders. Dentomaxillofac Radiol 1996;25:119-24.
  • 17. Faundez-Zanuy M, Mekyska J, Espinosa-Duro V. On the focusing of thermal images. Pattern Recogn Lett 2011;32:1548-57.
  • 18. Gencoglu N, Samani S, Günday M. Dentinal wall adaptation of thermoplasticized gutta-percha in the absence or presence of smear layer: a scanning electron microscopic study. J Endod 1993;19:558-62.
  • 19. Gençoğlu N. Comparison of 6 different gutta-percha techniques (part II): Thermafil, JS Quick-Fill, Soft Core, Microseal, System B, and lateral condensation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:91-5.
  • 20. Clinton K, Van Himel T. Comparison of a warm gutta-percha obturation technique and lateral condensation. J Endod 2001;27:692-5.
  • 21. Ektefaie MR, David HT, Poh CF. Surgical resolution of chronic tissue irritation caused by extruded endodontic filling material. J Can Dent Assoc 2005;71:487-90.
  • 22. Zhou X, Chen Y, Wei X, Liu L, Zhang F, Shi Y, et al. Heat transfers to periodontal tissues and gutta-percha during thermoplasticized root canal obturation in a finite element analysis model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:257-63.
  • 23. Venturi M, Pasquantonio G, Falconi M, Breschi L. Temperature change within gutta-percha induced by the System-B Heat Source. Int Endod J 2002;35:740-6.
  • 24. Weller RN, Koch KA. In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha. Int Endod J 1995;28:86-90.
  • 25. Weller RN, Koch KA. In vitro temperatures produced by a new heated injectable gutta-percha system. Int Endod J 1994;27:299-303.
  • 26. Er O, Yaman SD, Hasan M. Finite element analysis of the effects of thermal obturation in maxillary canine teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:277-86.
  • 27. Behnia A, McDonald NJ. In vitro infrared thermographic assessment of root surface temperatures generated by the thermafil plus system. J Endod 2001;27:203-5.
  • 28. Lipski M, Mrozek J, Droździk A. Influence of water cooling on root surface temperature generated during post space preparation. J Endod 2010;36:713-6.
  • 29. Huttula AS, Tordik PA, Imamura G, Eichmiller FC, McClanahan SB. The effect of ultrasonic post instrumentation on root surface temperature. J Endod 2006;32:1085-7.
  • 30. Kilic K, Er O, Kilinc HI, Aslan T, Bendes E, Sekerci AE, et al. Infrared thermographic comparison of temperature increases on the root surface during dowel space preparations using circular versus oval fiber dowel systems. J Prosthodont 2013;22:203-7.

Ultrasonik olarak aktive edilen obturasyon tekniği esnasındaki kök yüzeyi sıcaklıklarının kızılötesi termal analizi

Year 2015, Volume: 32 Issue: 2, 57 - 62, 21.04.2015
https://doi.org/10.17214/aot.92891

Abstract

AMAÇ: Güta-perkanın ultrasonik kondensasyonu tekniğinin mandibular premolar dişlerin dış kök yüzeyi üzerinde meydana getirdiği sıcaklık değişimlerinin değerlendirilmesidir.

GEREÇ VE YÖNTEM: On adet çekilmiş mandibular premolar diş seçildi. Kökler, boyları14 mm olacak şekilde kesildi. Kök kanal tedavileri ProTaper sistem ile gerçekleştirildi ve ana apikal eğe F3 enstrümanı olarak belirlendi. Kök kanal preparasyonlarından sonra, kök üzerinde en ince dentin noktasının belirlenmesi amacıyla konik ışınlı bilgisayarlı tomografi görüntüleri alındı. Tüm kökler akrilik plakalara gömüldü. Sıcaklık ölçümleri için örnekler, bu çalışmaya özel olarak tasarlanmış olan paslanmaz çelik bir mekanizmaya yerleştirildi. Dolum sırasında meydana gelen sıcaklık değişimleri (deney grubu olarak ultrasonik ile sıcak lateral kondensasyon tekniği ve kontrol olarak soğuk lateral kondensasyon) bir termal kamera yardımıyla kaydedildi. İstatistiksel karşılaştırma bir bilgisayar yazılımı kullanılarak bağımlı olmayan t-testi ile yapıldı (α=0.01).

BULGULAR: Gruplar arasında anlamlı farklılık vardı (p<0.01). Örneklerin ortalama obturasyon süreleri deney grubu için 232.8 sn ve kontrol grubu için 102.5 sn idi. Deney grubundaki maksimum sıcaklık artışı ortalaması 49.96±11.12 °C olarak gözlendi; kontrol grubunda herhangi bir sıcaklık artışı kaydedilmedi. Maksimum sıcaklık artışları arasındaki en büyük değer 68.9 °C, en küçük değer 35.9 °C idi. Örneklerin ortalama soğuma zamanları 17 sn idi ve 1 dakikayı aşmadı. SONUÇ: Bu çalışmada, periodonsiyum üzerinde zararlı etkilere yol açabilecek yüksek sıcaklıklar gözlenmiştir; ancak, örneklerin ortalama soğuma süreleri normal sınırlar içerisindeydi (1 dakikadan az). Farklı güç derecelerinde gerçekleştirilecek daha ileri çalışmalara ihtiyaç bulunmaktadır. ANAHTAR KELİMELER: Endodonti; guttaperka; ultrasonik><0.01). Örneklerin ortalama obturasyon süreleri deney grubu için 232.8 sn ve kontrol grubu için 102.5 sn idi. Deney grubundaki maksimum sıcaklık artışı ortalaması 49.96±11.12 °C olarak gözlendi; kontrol grubunda herhangi bir sıcaklık artışı kaydedilmedi. Maksimum sıcaklık artışları arasındaki en büyük değer68.9 °C, en küçük değer35.9 °C idi. Örneklerin ortalama soğuma zamanları 17 sn idi ve 1 dakikayı aşmadı.

SONUÇ: Bu çalışmada, periodonsiyum üzerinde zararlı etkilere yol açabilecek yüksek sıcaklıklar gözlenmiştir; ancak, örneklerin ortalama soğuma süreleri normal sınırlar içerisindeydi (1 dakikadan az). Farklı güç derecelerinde gerçekleştirilecek daha ileri çalışmalara ihtiyaç bulunmaktadır. 

References

  • 1. Smith CS, Setchell DJ, Harty FJ. Factors influencing the success of conventional root canal therapy--a five-year retrospective study. Int Endod J 1993;26:321-33.
  • 2. Wolf M, Küpper K, Reimann S, Bourauel C, Frentzen M. 3D analyses of interface voids in root canals filled with different sealer materials in combination with warm gutta-percha technique. Clin Oral Investig 2014;18:155-61.
  • 3. Brayton SM, Davis SR, Goldman M. Gutta-percha root canal fillings. An in vitro analysis. Oral Surg Oral Med Oral Pathol 1973;35:226-31.
  • 4. Deitch AK, Liewehr FR, West LA, Patton WR. A comparison of fill density obtained by supplementing cold lateral condensation with ultrasonic condensation. J Endod 2002;28:665-7.
  • 5. Bailey GC, Ng YL, Cunnington SA, Barber P, Gulabivala K, Setchell DJ. Root canal obturation by ultrasonic condensation of gutta-percha. Part II: an in vitro investigation of the quality of obturation. Int Endod J 2004;37:694-8.
  • 6. Yancich PP, Hartwell GR, Portell FR. A comparison of apical seal: chloroform versus eucalyptol-dipped gutta-percha obturation. J Endod 1989;15:257-60.
  • 7. Ozcan E, Eldeniz AÜ, Aydinbelge HA. Assessment of the sealing abilities of several root canal sealers and filling methods. Acta Odontol Scand 2013;71:1362-9.
  • 8. Re Cecconi D, Grassi M, Tortini D, Brambilla E, Gagliani MM. Efficacy of ultrasonic vibration in warm gutta-percha vertical compaction. Minerva Stomatol 2012;61:75-82.
  • 9. Soulie J. [Technic for canal filling using ultrasound]. Actual Odontostomatol (Paris) 1975;112:591-600.
  • 10. Baumgardner KR, Krell KV. Ultrasonic condensation of gutta-percha: an in vitro dye penetration and scanning electron microscopic study. J Endod 1990;16:253-9.
  • 11. Eriksson AR, Albrektsson T. Temperature threshold levels for heatinduced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-7.
  • 12. Hardie EM. Further studies on heat generation during obturation techniques involving thermally softened gutta-percha. Int Endod J 1987;20:122-7.
  • 13. Saunders EM. In vivo findings associated with heat generation during thermomechanical compaction of gutta-percha. 2. Histological response to temperature elevation on the external surface of the root. Int Endod J 1990;23:268-74.
  • 14. Bailey GC, Cunnington SA, Ng YL, Gulabivala K, Setchell DJ. Ultrasonic condensation of gutta-percha: the effect of power setting and activation time on temperature rise at the root surface - an in vitro study. Int Endod J 2004;37:447-54.
  • 15. Mc Cullagh JJ, Setchell DJ, Gulabivala K, Hussey DL, Biagioni P, Lamey PJ, et al. A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. Int Endod J 2000;33:326-32.
  • 16. Biagioni PA, Longmore RB, McGimpsey JG, Lamey PJ. Infrared thermography. Its role in dental research with particular reference to craniomandibular disorders. Dentomaxillofac Radiol 1996;25:119-24.
  • 17. Faundez-Zanuy M, Mekyska J, Espinosa-Duro V. On the focusing of thermal images. Pattern Recogn Lett 2011;32:1548-57.
  • 18. Gencoglu N, Samani S, Günday M. Dentinal wall adaptation of thermoplasticized gutta-percha in the absence or presence of smear layer: a scanning electron microscopic study. J Endod 1993;19:558-62.
  • 19. Gençoğlu N. Comparison of 6 different gutta-percha techniques (part II): Thermafil, JS Quick-Fill, Soft Core, Microseal, System B, and lateral condensation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:91-5.
  • 20. Clinton K, Van Himel T. Comparison of a warm gutta-percha obturation technique and lateral condensation. J Endod 2001;27:692-5.
  • 21. Ektefaie MR, David HT, Poh CF. Surgical resolution of chronic tissue irritation caused by extruded endodontic filling material. J Can Dent Assoc 2005;71:487-90.
  • 22. Zhou X, Chen Y, Wei X, Liu L, Zhang F, Shi Y, et al. Heat transfers to periodontal tissues and gutta-percha during thermoplasticized root canal obturation in a finite element analysis model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:257-63.
  • 23. Venturi M, Pasquantonio G, Falconi M, Breschi L. Temperature change within gutta-percha induced by the System-B Heat Source. Int Endod J 2002;35:740-6.
  • 24. Weller RN, Koch KA. In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha. Int Endod J 1995;28:86-90.
  • 25. Weller RN, Koch KA. In vitro temperatures produced by a new heated injectable gutta-percha system. Int Endod J 1994;27:299-303.
  • 26. Er O, Yaman SD, Hasan M. Finite element analysis of the effects of thermal obturation in maxillary canine teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:277-86.
  • 27. Behnia A, McDonald NJ. In vitro infrared thermographic assessment of root surface temperatures generated by the thermafil plus system. J Endod 2001;27:203-5.
  • 28. Lipski M, Mrozek J, Droździk A. Influence of water cooling on root surface temperature generated during post space preparation. J Endod 2010;36:713-6.
  • 29. Huttula AS, Tordik PA, Imamura G, Eichmiller FC, McClanahan SB. The effect of ultrasonic post instrumentation on root surface temperature. J Endod 2006;32:1085-7.
  • 30. Kilic K, Er O, Kilinc HI, Aslan T, Bendes E, Sekerci AE, et al. Infrared thermographic comparison of temperature increases on the root surface during dowel space preparations using circular versus oval fiber dowel systems. J Prosthodont 2013;22:203-7.
There are 30 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Research Article
Authors

Özgür Er This is me

Tuğrul Aslan This is me

Yakup Üstün This is me

Halil Kılınç This is me

Publication Date April 21, 2015
Published in Issue Year 2015 Volume: 32 Issue: 2

Cite

APA Er, Ö., Aslan, T., Üstün, Y., Kılınç, H. (2015). Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique. Acta Odontologica Turcica, 32(2), 57-62. https://doi.org/10.17214/aot.92891
AMA Er Ö, Aslan T, Üstün Y, Kılınç H. Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique. Acta Odontol Turc. April 2015;32(2):57-62. doi:10.17214/aot.92891
Chicago Er, Özgür, Tuğrul Aslan, Yakup Üstün, and Halil Kılınç. “Infrared Thermal Analysis of Root Surface Temperatures During the Ultrasonically Activated Obturation Technique”. Acta Odontologica Turcica 32, no. 2 (April 2015): 57-62. https://doi.org/10.17214/aot.92891.
EndNote Er Ö, Aslan T, Üstün Y, Kılınç H (April 1, 2015) Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique. Acta Odontologica Turcica 32 2 57–62.
IEEE Ö. Er, T. Aslan, Y. Üstün, and H. Kılınç, “Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique”, Acta Odontol Turc, vol. 32, no. 2, pp. 57–62, 2015, doi: 10.17214/aot.92891.
ISNAD Er, Özgür et al. “Infrared Thermal Analysis of Root Surface Temperatures During the Ultrasonically Activated Obturation Technique”. Acta Odontologica Turcica 32/2 (April 2015), 57-62. https://doi.org/10.17214/aot.92891.
JAMA Er Ö, Aslan T, Üstün Y, Kılınç H. Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique. Acta Odontol Turc. 2015;32:57–62.
MLA Er, Özgür et al. “Infrared Thermal Analysis of Root Surface Temperatures During the Ultrasonically Activated Obturation Technique”. Acta Odontologica Turcica, vol. 32, no. 2, 2015, pp. 57-62, doi:10.17214/aot.92891.
Vancouver Er Ö, Aslan T, Üstün Y, Kılınç H. Infrared thermal analysis of root surface temperatures during the ultrasonically activated obturation technique. Acta Odontol Turc. 2015;32(2):57-62.