Research Article
BibTex RIS Cite

Algo-AR: Development of an Augmented Reality-Supported Tangible Programming Tool to Improve Algorithmic Thinking Skills

Year 2024, , 59 - 69, 30.04.2024
https://doi.org/10.17671/gazibtd.1398781

Abstract

The main purpose of this study is to develop an educational tool to help children acquire algorithmic thinking skills at an early age while having fun. The methodology combines modern technologies and approaches such as augmented reality (AR), gamification, and tangible user interfaces. In this application, the coding components consist of specially designed tangible command blocks in the form of jigsaw puzzle pieces. The application contains a 3D multi-level game environment, and the user is expected to control the game character by constructing an algorithm with physical command blocks. The constructed algorithm is scanned using a mobile AR application and converted into code that controls the game environment. The major design considerations during the development of this application were simplicity and accessibility. All design decisions were delineated extensively in the paper. In conclusion, an augmented reality-based gamified tangible programming kit is proposed to improve children’s algorithmic thinking skills at an early age. The application requires only a smartphone and printable command blocks. Thus, an inexpensive, accessible, and entertaining educational tool is developed.

References

  • J. Fagerlund, P. Häkkinen, M. Vesisenaho, J. Viiri, “Computational thinking in programming with Scratch in primary schools: A systematic review,” Comput. Appl. Eng. Educ., 29(1), 12–28, 2021.
  • J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, M. Resnick, “Scratch: a sneak preview [education],” Second International Conference on Creating, Connecting and Collaborating through Computing, Kyoto, 104–109, 2004.
  • M. Conway, S. Audia, T. Burnette, D. Cosgrove, K. Christiansen, “Alice: lessons learned from building a 3D system for novices,” SIGCHI Conference on Human Factors in Computing Systems, Netherlands, 486–493, 2000.
  • N. Fraser, “Ten things we’ve learned from Blockly,” IEEE Blocks and Beyond Workshop (Blocks and Beyond), USA, 49–50, 2015.
  • A. Strawhacker, M. U. Bers, “‘I want my robot to look for food’: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces,” Int. J. Technol. Des. Educ., 25, 293–319, 2015.
  • H. Suzuki, H. Kato, “Algoblock: a tangible programming language, a tool for collaborative learning,” 4th European Logo Conference, 297–303, 1993.
  • D. Wang, Y. Zhang, S. Chen, “E-block: A tangible programming tool with graphical blocks,” Math. Probl. Eng., 2013, doi: 10.1155/2013/598547.
  • F. Klassner, S. D. Anderson, “LEGO MindStorms: Not just for K-12 anymore,” IEEE Robotics and Automation Magazine, 10(2), 12–18, 2003, doi: 10.1109/MRA.2003.1213611.
  • M. S. Horn, R. J. K. Jacob, “Designing tangible programming languages for classroom use,” International Conference on Tangible and Embedded Interaction, Louisiana, 159–162, 2007, doi: 10.1145/1226969.1227003.
  • E. Naude, A. Fowler, R. Lemon, C. J. Sutherland, “Kupe’s Journey: Building a Low-cost, Screen-free Robotic Programming Environment for Children,” 20th International Conference on Ubiquitous Robots (UR), USA, 710–715, 2023, doi: 10.1109/UR57808.2023.10202226.
  • S. Tobias, J. D. Fletcher, and A. P. Wind, “Game-based learning,” Handb. Res. Educ. Commun. Technol., pp. 485–503, 2014.
  • G. Lampropoulos, E. Keramopoulos, K. Diamantaras, G. Evangelidis, “Augmented reality and gamification in education: A systematic literature review of research, applications, and empirical studies,” Appl. Sci., 12(13), 6809, 2022.
  • A. Gardeli, S. Vosinakis, "The effect of tangible augmented reality interfaces on teaching computational thinking: A preliminary study," 21st International Conference on Interactive Collaborative Learning (ICL2018), Greece, 673-684, 2020.
  • A. Theodoropoulos, G. Lepouras, “Augmented Reality and programming education: A systematic review,” Int. J. Child-Computer Interact., 30, 100335, 2021. S. A. Hassan, T. Rahim, S. Y. Shin, “ChildAR: an augmented reality-based interactive game for assisting children in their education,” Univers. Access Inf. Soc., 21(2), 545–556, 2022.
  • Y.-C. Chien, Y.-N. Su, T.-T. Wu, Y.-M. Huang, “Enhancing students’ botanical learning by using augmented reality,” Univers. Access Inf. Soc., 18, 231–241, 2019.
  • Z. Çipiloğlu Yıldız, M. Türker, R. Ak, “Mimari Miras Eğitiminde Artırılmış Gerçeklik ve Fotogrametri Desteği,” Bilişim Teknol. Derg., 14(2), 137–149, 2021, doi: 10.17671/gazibtd.792539.
  • B. Cleto, C. Sylla, L. Ferreira, J. M. Moura, “CodeCubes: Coding with Augmented Reality,” First international computer programming education conference, Portugal, 7:1-7:9, 2020, doi: 10.4230/OASIcs.ICPEC.2020.7.
  • S. Washbrooke, N. Giacaman, “Play, Code, Learn: Fostering Computational Thinking in Primary Aged Learners Through Interactive Play,” IoT, AI, and ICT for Educational Applications: Technologies to Enable Education for All, Ed.: S. Papadakis, Cham: Springer Nature, Switzerland, 135–162, 2024.
  • M. G. Rios, M. Paredes-Velasco, “Using Augmented Reality in programming learning: A systematic mapping study,” IEEE Global Engineering Education Conference (EDUCON), Austria, 1635–1641, 2021, doi: 10.1109/EDUCON46332.2021.9454149.
  • M. Liang, Y. Li, T. Weber, H. Hussmann, “Tangible interaction for children’s creative learning: A review,” Conference on Creativity and Cognition, 1–14, 2021.
  • J. M. Cerqueira, B. Cleto, J. M. Moura, C. Sylla, L. Ferreira, “Potentiating Learning Through Augmented Reality and Serious Games,” Springer Handbook of Augmented Reality, Eds.: A. Y. C. Nee, S. K. Ong, Cham: Springer International Publishing, 369–390, 2023.
  • I. Radu, B. MacIntyre, “Augmented-reality scratch: a tangible programming environment for children,” Conference on Interaction Design for Children, Italy, 2009.
  • Q. Jin, D. Wang, X. Deng, N. Zheng, S. Chiu, “AR-maze: A tangible programming tool for children based on AR technology,” ACM Conference on Interaction Design and Children, Norway, 611–616, 2018, doi: 10.1145/3202185.3210784.
  • A. Fuste, C. Schmandt, “Hypercubes: A playful introduction to computational thinking in augmented reality,” CHI PLAY 2019 - Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play, Spain, 379–387, 2019, doi: 10.1145/3341215.3356264.
  • A. Gardeli, S. Vosinakis, “ARQuest: A tangible augmented reality approach to developing computational thinking skills,” International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), Austria, 1-8, 2019, doi: 10.1109/VS-Games.2019.8864603.
  • [S. Goyal, R. S. Vijay, C. Monga, P. Kalita, “Code bits: an inexpensive tangible computational thinking toolkit for K-12 curriculum,” International Conference on Tangible, Embedded, and Embodied Interaction, Netherlands, 441–447, 2016.
  • A. Sabuncuoǧlu, M. Erkaya, O. T. Buruk, T. Göksun, “Code notes: Designing a low-cost tangible coding tool for/with children,” ACM Conf. Interact. Des. Child., Norway, 644–649, 2018, doi: 10.1145/3202185.3210791.
  • A. Sabuncuoglu, T. M. Sezgin, “Kart-ON: An Extensible Paper Programming Strategy for Affordable Early Programming Education,” ACM Human-Computer Interact., 6(EICS), 1–18, 2022.
  • T. Bell, J. Alexander, I. Freeman, M. Grimley, “Computer science unplugged: School students doing real computing without computers,” New Zeal. J. Appl. Comput. Inf. Technol., 13(1), 20–29, 2009
  • A. Juškevičiene, G. Stupuriene, T. Jevsikova, “Computational thinking development through physical computing activities in STEAM education,” Comput. Appl. Eng. Educ., 29(1), 175–190, 2021.
  • J. Nielsen, “Enhancing the explanatory power of usability heuristics,” SIGCHI conference on Human Factors in Computing Systems, USA, 152–158, 1994.

Algo-AR: Algoritmik Düşünme Becerilerinin Geliştirilmesi İçin Artırılmış Gerçeklik Destekli bir Somut Programlama Aracı Geliştirilmesi

Year 2024, , 59 - 69, 30.04.2024
https://doi.org/10.17671/gazibtd.1398781

Abstract

Bu çalışmanın temel amacı, çocukların eğlenirken algoritmik düşünme becerilerini erken yaşta kazanmalarına yardımcı olacak bir eğitim aracı geliştirmektir. Metodoloji, artırılmış gerçeklik (AG), oyunlaştırma ve somut kullanıcı arayüzleri gibi modern teknolojileri ve yaklaşımları birleştirmektedir. Bu uygulamada kodlama bileşenleri, yapboz parçaları şeklinde özel olarak tasarlanmış fiziksel komut bloklarından oluşmaktadır. Uygulama, çeşitli seviyeleri olan üç boyutlu bir oyun ortamı içermekte ve kullanıcının fiziksel komut blokları ile bir algoritma oluşturarak oyun karakterini kontrol etmesi beklenmektedir. Oluşturulan algoritma bir mobil artırılmış gerçeklik uygulaması ile taranmakta ve oyun ortamını kontrol eden koda dönüştürülmektedir. Bu uygulamanın geliştirilmesi sırasında tasarımda dikkat edilen başlıca hususlar basitlik ve erişilebilirlik olmuştur. Tüm tasarım kararları makalede kapsamlı bir şekilde açıklanmıştır. Sonuç olarak, erken yaştaki çocukların algoritmik becerilerini geliştirmek için artırılmış gerçeklik destekli oyunlaştırılmış somut bir programlama aracı önerilmiştir. Uygulama yalnızca bir akıllı telefona ve yazdırılabilir komut bloklarına ihtiyaç duymaktadır. Böylece ucuz, erişilebilir ve eğlenceli bir eğitim aracı geliştirilmiştir.

References

  • J. Fagerlund, P. Häkkinen, M. Vesisenaho, J. Viiri, “Computational thinking in programming with Scratch in primary schools: A systematic review,” Comput. Appl. Eng. Educ., 29(1), 12–28, 2021.
  • J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, M. Resnick, “Scratch: a sneak preview [education],” Second International Conference on Creating, Connecting and Collaborating through Computing, Kyoto, 104–109, 2004.
  • M. Conway, S. Audia, T. Burnette, D. Cosgrove, K. Christiansen, “Alice: lessons learned from building a 3D system for novices,” SIGCHI Conference on Human Factors in Computing Systems, Netherlands, 486–493, 2000.
  • N. Fraser, “Ten things we’ve learned from Blockly,” IEEE Blocks and Beyond Workshop (Blocks and Beyond), USA, 49–50, 2015.
  • A. Strawhacker, M. U. Bers, “‘I want my robot to look for food’: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces,” Int. J. Technol. Des. Educ., 25, 293–319, 2015.
  • H. Suzuki, H. Kato, “Algoblock: a tangible programming language, a tool for collaborative learning,” 4th European Logo Conference, 297–303, 1993.
  • D. Wang, Y. Zhang, S. Chen, “E-block: A tangible programming tool with graphical blocks,” Math. Probl. Eng., 2013, doi: 10.1155/2013/598547.
  • F. Klassner, S. D. Anderson, “LEGO MindStorms: Not just for K-12 anymore,” IEEE Robotics and Automation Magazine, 10(2), 12–18, 2003, doi: 10.1109/MRA.2003.1213611.
  • M. S. Horn, R. J. K. Jacob, “Designing tangible programming languages for classroom use,” International Conference on Tangible and Embedded Interaction, Louisiana, 159–162, 2007, doi: 10.1145/1226969.1227003.
  • E. Naude, A. Fowler, R. Lemon, C. J. Sutherland, “Kupe’s Journey: Building a Low-cost, Screen-free Robotic Programming Environment for Children,” 20th International Conference on Ubiquitous Robots (UR), USA, 710–715, 2023, doi: 10.1109/UR57808.2023.10202226.
  • S. Tobias, J. D. Fletcher, and A. P. Wind, “Game-based learning,” Handb. Res. Educ. Commun. Technol., pp. 485–503, 2014.
  • G. Lampropoulos, E. Keramopoulos, K. Diamantaras, G. Evangelidis, “Augmented reality and gamification in education: A systematic literature review of research, applications, and empirical studies,” Appl. Sci., 12(13), 6809, 2022.
  • A. Gardeli, S. Vosinakis, "The effect of tangible augmented reality interfaces on teaching computational thinking: A preliminary study," 21st International Conference on Interactive Collaborative Learning (ICL2018), Greece, 673-684, 2020.
  • A. Theodoropoulos, G. Lepouras, “Augmented Reality and programming education: A systematic review,” Int. J. Child-Computer Interact., 30, 100335, 2021. S. A. Hassan, T. Rahim, S. Y. Shin, “ChildAR: an augmented reality-based interactive game for assisting children in their education,” Univers. Access Inf. Soc., 21(2), 545–556, 2022.
  • Y.-C. Chien, Y.-N. Su, T.-T. Wu, Y.-M. Huang, “Enhancing students’ botanical learning by using augmented reality,” Univers. Access Inf. Soc., 18, 231–241, 2019.
  • Z. Çipiloğlu Yıldız, M. Türker, R. Ak, “Mimari Miras Eğitiminde Artırılmış Gerçeklik ve Fotogrametri Desteği,” Bilişim Teknol. Derg., 14(2), 137–149, 2021, doi: 10.17671/gazibtd.792539.
  • B. Cleto, C. Sylla, L. Ferreira, J. M. Moura, “CodeCubes: Coding with Augmented Reality,” First international computer programming education conference, Portugal, 7:1-7:9, 2020, doi: 10.4230/OASIcs.ICPEC.2020.7.
  • S. Washbrooke, N. Giacaman, “Play, Code, Learn: Fostering Computational Thinking in Primary Aged Learners Through Interactive Play,” IoT, AI, and ICT for Educational Applications: Technologies to Enable Education for All, Ed.: S. Papadakis, Cham: Springer Nature, Switzerland, 135–162, 2024.
  • M. G. Rios, M. Paredes-Velasco, “Using Augmented Reality in programming learning: A systematic mapping study,” IEEE Global Engineering Education Conference (EDUCON), Austria, 1635–1641, 2021, doi: 10.1109/EDUCON46332.2021.9454149.
  • M. Liang, Y. Li, T. Weber, H. Hussmann, “Tangible interaction for children’s creative learning: A review,” Conference on Creativity and Cognition, 1–14, 2021.
  • J. M. Cerqueira, B. Cleto, J. M. Moura, C. Sylla, L. Ferreira, “Potentiating Learning Through Augmented Reality and Serious Games,” Springer Handbook of Augmented Reality, Eds.: A. Y. C. Nee, S. K. Ong, Cham: Springer International Publishing, 369–390, 2023.
  • I. Radu, B. MacIntyre, “Augmented-reality scratch: a tangible programming environment for children,” Conference on Interaction Design for Children, Italy, 2009.
  • Q. Jin, D. Wang, X. Deng, N. Zheng, S. Chiu, “AR-maze: A tangible programming tool for children based on AR technology,” ACM Conference on Interaction Design and Children, Norway, 611–616, 2018, doi: 10.1145/3202185.3210784.
  • A. Fuste, C. Schmandt, “Hypercubes: A playful introduction to computational thinking in augmented reality,” CHI PLAY 2019 - Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play, Spain, 379–387, 2019, doi: 10.1145/3341215.3356264.
  • A. Gardeli, S. Vosinakis, “ARQuest: A tangible augmented reality approach to developing computational thinking skills,” International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), Austria, 1-8, 2019, doi: 10.1109/VS-Games.2019.8864603.
  • [S. Goyal, R. S. Vijay, C. Monga, P. Kalita, “Code bits: an inexpensive tangible computational thinking toolkit for K-12 curriculum,” International Conference on Tangible, Embedded, and Embodied Interaction, Netherlands, 441–447, 2016.
  • A. Sabuncuoǧlu, M. Erkaya, O. T. Buruk, T. Göksun, “Code notes: Designing a low-cost tangible coding tool for/with children,” ACM Conf. Interact. Des. Child., Norway, 644–649, 2018, doi: 10.1145/3202185.3210791.
  • A. Sabuncuoglu, T. M. Sezgin, “Kart-ON: An Extensible Paper Programming Strategy for Affordable Early Programming Education,” ACM Human-Computer Interact., 6(EICS), 1–18, 2022.
  • T. Bell, J. Alexander, I. Freeman, M. Grimley, “Computer science unplugged: School students doing real computing without computers,” New Zeal. J. Appl. Comput. Inf. Technol., 13(1), 20–29, 2009
  • A. Juškevičiene, G. Stupuriene, T. Jevsikova, “Computational thinking development through physical computing activities in STEAM education,” Comput. Appl. Eng. Educ., 29(1), 175–190, 2021.
  • J. Nielsen, “Enhancing the explanatory power of usability heuristics,” SIGCHI conference on Human Factors in Computing Systems, USA, 152–158, 1994.
There are 31 citations in total.

Details

Primary Language English
Subjects Serious Games and Simulations, Graphics, Augmented Reality and Games (Other), Human-Computer Interaction
Journal Section Articles
Authors

Zeynep Çipiloğlu Yıldız 0000-0003-4129-591X

Süleyman Doğan This is me 0009-0008-0587-2525

Publication Date April 30, 2024
Submission Date December 8, 2023
Acceptance Date February 2, 2024
Published in Issue Year 2024

Cite

APA Çipiloğlu Yıldız, Z., & Doğan, S. (2024). Algo-AR: Development of an Augmented Reality-Supported Tangible Programming Tool to Improve Algorithmic Thinking Skills. Bilişim Teknolojileri Dergisi, 17(2), 59-69. https://doi.org/10.17671/gazibtd.1398781