BibTex RIS Cite

Premise of Learning Analytics for Educational Context: Through Concept to Practice

Year 2014, Volume: 7 Issue: 3, 20 - , 17.03.2014

Abstract

The idea of using recorded data for evaluating the effectiveness of teaching-learning process and using the outcomes for improvement and enhancing quality lead to the emergence of the field known as “learning analytics”. Based on the analysis of this data, possible predictions could be reached to make suggestions and give decisions in order to implement interventions for the improvement of the quality of the process. Hence, the concept of “learning analytics” is a promising and important field of study, with its processes and potential to advance e-learning. In this study, learning analytics are defined in two ways - business and e-learning environments. As an e-learning environment, Moodle LMS was chosen and analyzed through SAS Level of Analytics. According to the analysis, some practical ideas developed. However learning analytics seem to be mostly based on quantitative data, whereas qualitative insights can also be gained through various approaches which can be used to strengthen the numerical data by providing detailed facts about a phenomenon. Thus, in addition to focusing on the learner, for research studies at the course, program, and institutional level; the research should include instructors and administrators in order to reveal the best practices of instructional design and fulfil the premise of effective teaching. 

References

  • J. Bichsel. Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations (Research Report). Louisville, CO: EDUCAUSE Center for Applied Research, 2012. Retrieved from http://net.educause.edu/ir/library/pdf/ERS1207/ers1207.pdf, 08.07.2013 M. Brown. Learning Analytics: Moving from Concept to Practice. EDUCAUSE Learning Initiative, 2012. Retrieved from http://net.educause.edu/ir/library/pdf/ELIB1203.pdf, 12.09.2013.
  • S. Buckingham Shum & R. Ferguson. “Social Learning Analytics”, Educational Technology & Society, 15 (3), 3–26, 2012.
  • L. Johnson, S. Adams & M. Cummins. The NMC Horizon Report: 2012 Higher Education Edition. Austin, Texas: The New Media Consortium, 2012.
  • L. Johnson, S. Adams Becker, V. Estrada & A. Freeman. NMC Horizon Report: 2014 Higher Education Edition. Austin, Texas: The New Media Consortium, 2014.
  • V. Diaz & M. Brown. Learning Analytics: A Report on the ELI Focus Session. EDUCAUSE Learning Initiative, 2012. Retrieved from http://net.educause.edu/ir/library/PDF/ELI3027.pdf, 7.11.2013.
  • A. L. Dyckhoff, D. Zielke, M. Bültmann, M. A. Chatti & U. Schroeder. “Design and Implementation of a Learning Analytics Toolkit for Teachers”. Educational Technology & Society, 15(3), 58–76, 2012. Internet: T. Elias, Learning Analytics: Definitions, Processes and Potential, http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPoten tial.pdf, 23.12.2013.
  • S. Greengard. “Business Intelligence & Analytics: Optimizing Your Enterprise”. Baseline, 102, 18-23, 2010.
  • W. Greller & H. Drachsler. “Translating Learning into Numbers: A Generic Framework for Learning Analytics”. Educational Technology & Society, 15(3), 42–57, 2012.
  • R. Hijon & A. Velazquez. “E-learning Platforms Analysis and Development of Students Tracking Functionality”. Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, Chesapeake, VA:AACE, 2823-2828, 2006.
  • S. J. Jones. “Technology review: The possibilities of learning analytics to improve learner-centered decision-making”. The Community College Enterprise, 18(1), 89-92, 2012.
  • Internet: C. Kennett & M. Castle. Learning Analytics: An Introduction and Critical Analysis, http://etec.ctlt.ubc.ca/510wiki/Learning_Analytics, 18.09.2013.
  • M. L. Kent, B. J. Carr, R. A. Husted & R. A. Pop. “Learning web analytics: A tool for strategic communication”. Public Relations Review, 37, 536-543, 2011.
  • P. D. Long & G. Siemens, G. Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 2011. Retrieved from http://net.educause.edu/ir/library/pdf/ERM1151.pdf, 10.11.2013.
  • L. P. Macfadyen & S. Dawson. “Numbers Are Not Enough. Why eLearning Analytics Failed to Inform an Institutional Strategic Plan”. Educational Technology & Society, 15(3), 149–163, 2012.
  • F. McNeill. “Framing Unstructured Data for Business Analytics”. KMWorld, 1-4, 20 Retrieved from http://www.kmworld.com/Articles/White-Paper/Article/FramingUnstructured-Data-for-Business-Analytics-84874.aspx, 13.10.2013.
  • Internet: Moodle Statistics, www.moodle.org, 17.09.2013.
  • P. Năstase & D. Stoica. “A new business dimension – business analytics”. Accounting and Management Information Systems, 9(4), 603618, 2010.
  • M. P. V. Oliveira, K. McCormack & P. Trkman. “Business Analytics in Supply Chains - The Contingent Effect of Business Process Maturity”. Expert Systems with Applications, 39, 5488-5498, 2012.
  • R. Phillips, D. Maor, W. Cumming-Potvin, P. Roberts, J. Herrington, G. Preston & E. Moore. “Learning analytics and study behaviour: A pilot study”. Australasian Society for Computers in Learning in Tertiary Education Conference, Australia, 997-1007, 4-7 December, 2011.
  • SAS (2008). Eight levels of analytics. Sascom Magazine. Retrieved from http://www.sas.com/news/sascom/analytics_levels.pdf, 02013.
  • G. Siemens & D. Gasevic, D. “Guest Editorial - Learning and Knowledge Analytics”. Educational Technology & Society, 15(3), 1–2, 20 R. Tozman. “New Learning Analytics for A New Workplace”. T+D, 44-47, 2012.
  • Internet: http://www.solaresearch.org/mission/about/, 08.10.2013 Internet: Google Analytics, http://www.google.com/intl/en_uk/analytics/features/analysis-tools.html, 02014
  • S. Dawson, L. Macfadyen & L. Lockyer. “Learning or performance: Predicting drivers of student motivation. Same places, different spaces”. Australasian Society for Computers in Learning in Tertiary Education Conference, Auckland, New Zealand, 184-193, 69 December, 2009.
  • S. Dawson, L. Macfadyen, L. Lockyer, L & D. Mazzochi-Jones. “Using Social Network Metrics to Assess the Effectiveness of BroadBased Admission Practices”. Australasian Journal of Educational Technology, 27(1), 16-27, 2011.

-

Year 2014, Volume: 7 Issue: 3, 20 - , 17.03.2014

Abstract

— Öğrenme-öğretme süreçlerinin etkililiğinin değerlendirilmesi ve kalitenin arttırılması amacıyla süreçte kaydedilen verilerin kullanılmasının inceleyen alana “öğrenme analitikleri” adı verilmektedir. Bu verilerin analizine bağlı olarak sürecin kalitesinin geliştirilebilmekte, yeni uygulamalara dair kararlar verilebilmekte ve olası tahminler ile öneriler yürütülebilmektedir. Bu nedenle “öğrenme analitikleri” kavramı e-öğrenmenin gelişimi için önemli bir çalışma alanı olarak karşımıza çıkmaktadır. Bu çalışmada öğrenme analitikleri, kurumsal ve e-öğrenme ortamları olmak üzere iki açıdan ele alınmıştır. Moodle Öğrenme Yönetim Sistemi bir e-öğrenme ortamı olarak seçilmiş ve SAS’ın ortaya koymuş olduğu Öğrenme Analitikleri Seviyeleri açısından incelenmiştir. Bu incelemeye göre uygulamaya yönelik öneriler geliştirilmiştir. Her ne kadar öğrenme analitikleri çoğunlukla nicel veriye dayalı gibi görünse de çeşitli yaklaşımlarla nitel yansımalar da elde edilerek konu hakkında daha güçlü ve detaylı bilgilere ulaşılabilir. Öğrenciye odaklanmanın yanı sıra araştırmalarda ders, program ve kurumsal düzeyde öğretici ve yöneticilere de odaklanarak öğretim tasarımı ve etkili öğretim için en ideal uygulamalara dair veriler elde edilebilir.

References

  • J. Bichsel. Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations (Research Report). Louisville, CO: EDUCAUSE Center for Applied Research, 2012. Retrieved from http://net.educause.edu/ir/library/pdf/ERS1207/ers1207.pdf, 08.07.2013 M. Brown. Learning Analytics: Moving from Concept to Practice. EDUCAUSE Learning Initiative, 2012. Retrieved from http://net.educause.edu/ir/library/pdf/ELIB1203.pdf, 12.09.2013.
  • S. Buckingham Shum & R. Ferguson. “Social Learning Analytics”, Educational Technology & Society, 15 (3), 3–26, 2012.
  • L. Johnson, S. Adams & M. Cummins. The NMC Horizon Report: 2012 Higher Education Edition. Austin, Texas: The New Media Consortium, 2012.
  • L. Johnson, S. Adams Becker, V. Estrada & A. Freeman. NMC Horizon Report: 2014 Higher Education Edition. Austin, Texas: The New Media Consortium, 2014.
  • V. Diaz & M. Brown. Learning Analytics: A Report on the ELI Focus Session. EDUCAUSE Learning Initiative, 2012. Retrieved from http://net.educause.edu/ir/library/PDF/ELI3027.pdf, 7.11.2013.
  • A. L. Dyckhoff, D. Zielke, M. Bültmann, M. A. Chatti & U. Schroeder. “Design and Implementation of a Learning Analytics Toolkit for Teachers”. Educational Technology & Society, 15(3), 58–76, 2012. Internet: T. Elias, Learning Analytics: Definitions, Processes and Potential, http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPoten tial.pdf, 23.12.2013.
  • S. Greengard. “Business Intelligence & Analytics: Optimizing Your Enterprise”. Baseline, 102, 18-23, 2010.
  • W. Greller & H. Drachsler. “Translating Learning into Numbers: A Generic Framework for Learning Analytics”. Educational Technology & Society, 15(3), 42–57, 2012.
  • R. Hijon & A. Velazquez. “E-learning Platforms Analysis and Development of Students Tracking Functionality”. Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, Chesapeake, VA:AACE, 2823-2828, 2006.
  • S. J. Jones. “Technology review: The possibilities of learning analytics to improve learner-centered decision-making”. The Community College Enterprise, 18(1), 89-92, 2012.
  • Internet: C. Kennett & M. Castle. Learning Analytics: An Introduction and Critical Analysis, http://etec.ctlt.ubc.ca/510wiki/Learning_Analytics, 18.09.2013.
  • M. L. Kent, B. J. Carr, R. A. Husted & R. A. Pop. “Learning web analytics: A tool for strategic communication”. Public Relations Review, 37, 536-543, 2011.
  • P. D. Long & G. Siemens, G. Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 2011. Retrieved from http://net.educause.edu/ir/library/pdf/ERM1151.pdf, 10.11.2013.
  • L. P. Macfadyen & S. Dawson. “Numbers Are Not Enough. Why eLearning Analytics Failed to Inform an Institutional Strategic Plan”. Educational Technology & Society, 15(3), 149–163, 2012.
  • F. McNeill. “Framing Unstructured Data for Business Analytics”. KMWorld, 1-4, 20 Retrieved from http://www.kmworld.com/Articles/White-Paper/Article/FramingUnstructured-Data-for-Business-Analytics-84874.aspx, 13.10.2013.
  • Internet: Moodle Statistics, www.moodle.org, 17.09.2013.
  • P. Năstase & D. Stoica. “A new business dimension – business analytics”. Accounting and Management Information Systems, 9(4), 603618, 2010.
  • M. P. V. Oliveira, K. McCormack & P. Trkman. “Business Analytics in Supply Chains - The Contingent Effect of Business Process Maturity”. Expert Systems with Applications, 39, 5488-5498, 2012.
  • R. Phillips, D. Maor, W. Cumming-Potvin, P. Roberts, J. Herrington, G. Preston & E. Moore. “Learning analytics and study behaviour: A pilot study”. Australasian Society for Computers in Learning in Tertiary Education Conference, Australia, 997-1007, 4-7 December, 2011.
  • SAS (2008). Eight levels of analytics. Sascom Magazine. Retrieved from http://www.sas.com/news/sascom/analytics_levels.pdf, 02013.
  • G. Siemens & D. Gasevic, D. “Guest Editorial - Learning and Knowledge Analytics”. Educational Technology & Society, 15(3), 1–2, 20 R. Tozman. “New Learning Analytics for A New Workplace”. T+D, 44-47, 2012.
  • Internet: http://www.solaresearch.org/mission/about/, 08.10.2013 Internet: Google Analytics, http://www.google.com/intl/en_uk/analytics/features/analysis-tools.html, 02014
  • S. Dawson, L. Macfadyen & L. Lockyer. “Learning or performance: Predicting drivers of student motivation. Same places, different spaces”. Australasian Society for Computers in Learning in Tertiary Education Conference, Auckland, New Zealand, 184-193, 69 December, 2009.
  • S. Dawson, L. Macfadyen, L. Lockyer, L & D. Mazzochi-Jones. “Using Social Network Metrics to Assess the Effectiveness of BroadBased Admission Practices”. Australasian Journal of Educational Technology, 27(1), 16-27, 2011.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Yasemin Gülbahar

Hale Ilgaz

Publication Date March 17, 2014
Submission Date March 17, 2014
Published in Issue Year 2014 Volume: 7 Issue: 3

Cite

APA Gülbahar, Y., & Ilgaz, H. (2014). Premise of Learning Analytics for Educational Context: Through Concept to Practice. Bilişim Teknolojileri Dergisi, 7(3), 20. https://doi.org/10.12973/bid.2020