Araştırma Makalesi
BibTex RIS Kaynak Göster

FV sistemler için DSP tabanlı hibrit kontrol yöntemi

Yıl 2023, , 2251 - 2260, 12.04.2023
https://doi.org/10.17341/gazimmfd.1062711

Öz

Güneşten gelen ışınları elektrik enerjisine dönüştüren fotovoltaik (FV) paneller çıkışlarında doğrusal olmayan düşük seviyeli doğru akım (DA) formunda gerilim üretirler. Bu çalışmada, yüksek güçlü uygulamalar için FV panellerin gerilimini regüle etmek amacıyla yükselten tip DA/DA dönüştürücü devresine DSP tabanlı hibrit kontrol yöntemi önerilmiştir. Önerilen bu kontrol yöntemi aynı zamanda değiştir ve gözle maksimum güç noktası izleme (D&G MGNİ) işlevini de içermektedir. Gerilim kontrolü için PI ve akım kontrolü için ortalama kayan kipli (OKK) kontrolcü kullanılmıştır. Önerilen hibrit kontrol yöntemi, D&G MGNİ, PI, OKK kontrolcülerinin arka arkaya seri bağlanmasıyla elde edilmiştir. Önerilen kontrol yöntemi ile FV panel maksimum güç noktasında çalıştırılırken, çıkış gerilimi ve akımı sırasıyla PI ve OKK kontrolcüleri ile kontrol edilmiştir. DA/DA yükselten tip dönüştürücünün giriş kaynağı FV panel olarak modellenmiş ve MATLAB/Simulink benzetim ortamında önerilen hibrit kontrol yöntemi ile kontrol edilmiştir. Önerilen sistem ve kontrolcü için deney düzeneği kurulmuş ve DSP TMS320F28379D kartı vasıtasıyla çıkış gerilimi 200V ve çıkış gücü 400W olan sistemin deneysel sonuçları aktarılmıştır.

Kaynakça

  • 1. Guo S., Liu Q., Sun J., Jin H., A review on the utilization of hybrid renewable energy, Renew. Sust. Energ. Rev., 91, 1121-1147, 2018.
  • 2. Çelik İ., Yıldız C., Şekkeli M., Rüzgâr enerji santrali kurulumunda rüzgâr türbinlerinin mikro yerleşimi için bir optimizasyon modeli. Gazi University Journal of Science Part C: Design and Technology, 6 (4), 898-908, 2018.
  • 3. Liu F., Duan S., Liu F., Liu B., Kang Y., A variable step size INC MPPT method for PV systems, IEEE Transaction Industrial Electronics, 55 (7), 2622-2628, 2008.
  • 4. Karafil, A., Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1596-1611, 2021.
  • 5. Kotti R.; Shireen W., Efficient MPPT control for PV systems adaptive to fast changing irradiation and partial shading conditions. Sol. Energ., 114, 397-407, 2015.
  • 6. Krishnan G.S., Kinattingal S., Simon S.P., Nayak P.S.R., MPPT in PV systems using ant colony optimisation with dwindling population. IET Renew. Power Gener., 14 (7), 1105-1112, 2020.
  • 7. Yılancı A., Performance analysis of a photovoltaic panel cooled by thermoelectric effect, Journal of the Faculty of Engineering and Architecture Gazi University, 35 (2), 619-634, 2020.
  • 8. Srinivas N., Singh S., Gowda M., Prasanna C., Modi S., Comparative Analysis of Traditional and Soft Computing Techniques of MPPT in PV Applications. IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur-Malaysia, 1-6, 24-26 September, 2021.
  • 9. Messalti S., Harrag A., Loukriz A., A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation, Renew. Sust. Energ. Rev., 68, 221-233, 2017.
  • 10. Faranda R., Leva S., Energy comparison of MPPT techniques for PV systems, WSEAS Transactions on Power Systems, 3 (6), 446-455, 2008.
  • 11. Basha C.H., Rani C., Performance analysis of MPPT Techniques for dynamic irradiation condition of Solar PV. Int. J. Fuzzy Syst., 22 (8), 2577-2598, 2020.
  • 12. Ghaderi D., Bayrak G., Guerrero J.M., Grid code compatibility and real-time performance analysis of an efficient inverter topology for PV-based microgrid applications, Int. J. Electr. Power Energy Syst., 128, 106712, 2021.
  • 13. Padhy S., Panda S., A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles, CAAI Trans. Intell. Technol., 2 (1), 12-25, 2017.
  • 14. Ziegler J.G., Nichols N.B., Optimum settings for automatic controllers. Trans. ASME, 64 (11), (1942).
  • 15. Mahdavi J., Emadi A., Toliyat H.A., Application of State Space Averaging Method to Sliding Mode Control of PWM DC/DC Converters, Conference Record of the 1997 IEEE Industrial Application Conference Thirty-Second IAS Annual Meeting, New Orleans, LA, USA, 820-827, 5-9 Oct. 1997.
  • 16. Kocaarslan I., Kart S., Genc N., Uzmus H., Design and application of PEM fuel cell-based cascade boost converter. J. Electr. Eng., 101 (4), 1323-1332, 2019.
  • 17. Turan E., Bülent D.A.Ğ., Tamyürek B., Aydemir M.T., Design and implementation of an analog controller based on k-factor design method for a novel isolated Z-source DC-DC converter with high voltage gain, Gazi University Journal of Science Part C: Design and Technology, 9 (2), 317-334, 2021.
  • 18. Rashid M.H., Power Electronics: Circuits, Devices, and Applications. Pearson Education India, 2009.
  • 19. Jamaludin M.N.I., Tajuddin M.F.N., Ahmed J., Azm, A., Azmi S. A., Ghazali N. H., Alhelou H.H., An effective salp swarm based MPPT for photovoltaic systems under dynamic and partial shading conditions, IEEE Access, 9, 34570-34589, 2021.
  • 20. Hassan Q., Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renew. Energy, 164,375-90, 2021. 21. Celik, E., Öztürk, N., First application of symbiotic organisms search algorithm to off-line optimization of PI parameters for DSP-based DC motor drives, Neural Computing and Applications, 30 (5), 1689-1699, 2018.
  • 22. Genc N., Uzmus H., Iskender I., Dynamic Behavior of Dc-Dc Boost Converter Controlled with Cascade PI-ASC, IEEE 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti-Romania, 1-4, 30 June-2 July, 2016.

DSP based hybrid control method for PV systems

Yıl 2023, , 2251 - 2260, 12.04.2023
https://doi.org/10.17341/gazimmfd.1062711

Öz

Photovoltaic (PV) panels, which convert solar energy into electrical energy, generate non-linear, low-level direct current (DC) voltage. In this study, a DSP-based hybrid control method was proposed for the DC/DC boost converter to regulate the voltage of PV panels for high power applications. This proposed control method also includes perturb and observation maximum power point tracking (P&O MPPT) method. The output voltage was controlled with PI controller, and the current with average sliding mode (ASM) controller. The proposed hybrid control method was obtained by cascading P&O MPPT, PI, ASM controllers. With the proposed hybrid control method, while the PV panel was operated at the maximum power point, the output voltage and current were controlled by PI and ASM controllers, respectively. The input source of the DC/DC boost converter was modeled as FV panel and controlled with the proposed hybrid control method in the MATLAB/Simulink environment. The experimental setup was established for the proposed system and controller, and the experimental results of the system with 200V output voltage and 400W output power by DSP TMS320F28379D card were presented.

Kaynakça

  • 1. Guo S., Liu Q., Sun J., Jin H., A review on the utilization of hybrid renewable energy, Renew. Sust. Energ. Rev., 91, 1121-1147, 2018.
  • 2. Çelik İ., Yıldız C., Şekkeli M., Rüzgâr enerji santrali kurulumunda rüzgâr türbinlerinin mikro yerleşimi için bir optimizasyon modeli. Gazi University Journal of Science Part C: Design and Technology, 6 (4), 898-908, 2018.
  • 3. Liu F., Duan S., Liu F., Liu B., Kang Y., A variable step size INC MPPT method for PV systems, IEEE Transaction Industrial Electronics, 55 (7), 2622-2628, 2008.
  • 4. Karafil, A., Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1596-1611, 2021.
  • 5. Kotti R.; Shireen W., Efficient MPPT control for PV systems adaptive to fast changing irradiation and partial shading conditions. Sol. Energ., 114, 397-407, 2015.
  • 6. Krishnan G.S., Kinattingal S., Simon S.P., Nayak P.S.R., MPPT in PV systems using ant colony optimisation with dwindling population. IET Renew. Power Gener., 14 (7), 1105-1112, 2020.
  • 7. Yılancı A., Performance analysis of a photovoltaic panel cooled by thermoelectric effect, Journal of the Faculty of Engineering and Architecture Gazi University, 35 (2), 619-634, 2020.
  • 8. Srinivas N., Singh S., Gowda M., Prasanna C., Modi S., Comparative Analysis of Traditional and Soft Computing Techniques of MPPT in PV Applications. IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur-Malaysia, 1-6, 24-26 September, 2021.
  • 9. Messalti S., Harrag A., Loukriz A., A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation, Renew. Sust. Energ. Rev., 68, 221-233, 2017.
  • 10. Faranda R., Leva S., Energy comparison of MPPT techniques for PV systems, WSEAS Transactions on Power Systems, 3 (6), 446-455, 2008.
  • 11. Basha C.H., Rani C., Performance analysis of MPPT Techniques for dynamic irradiation condition of Solar PV. Int. J. Fuzzy Syst., 22 (8), 2577-2598, 2020.
  • 12. Ghaderi D., Bayrak G., Guerrero J.M., Grid code compatibility and real-time performance analysis of an efficient inverter topology for PV-based microgrid applications, Int. J. Electr. Power Energy Syst., 128, 106712, 2021.
  • 13. Padhy S., Panda S., A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles, CAAI Trans. Intell. Technol., 2 (1), 12-25, 2017.
  • 14. Ziegler J.G., Nichols N.B., Optimum settings for automatic controllers. Trans. ASME, 64 (11), (1942).
  • 15. Mahdavi J., Emadi A., Toliyat H.A., Application of State Space Averaging Method to Sliding Mode Control of PWM DC/DC Converters, Conference Record of the 1997 IEEE Industrial Application Conference Thirty-Second IAS Annual Meeting, New Orleans, LA, USA, 820-827, 5-9 Oct. 1997.
  • 16. Kocaarslan I., Kart S., Genc N., Uzmus H., Design and application of PEM fuel cell-based cascade boost converter. J. Electr. Eng., 101 (4), 1323-1332, 2019.
  • 17. Turan E., Bülent D.A.Ğ., Tamyürek B., Aydemir M.T., Design and implementation of an analog controller based on k-factor design method for a novel isolated Z-source DC-DC converter with high voltage gain, Gazi University Journal of Science Part C: Design and Technology, 9 (2), 317-334, 2021.
  • 18. Rashid M.H., Power Electronics: Circuits, Devices, and Applications. Pearson Education India, 2009.
  • 19. Jamaludin M.N.I., Tajuddin M.F.N., Ahmed J., Azm, A., Azmi S. A., Ghazali N. H., Alhelou H.H., An effective salp swarm based MPPT for photovoltaic systems under dynamic and partial shading conditions, IEEE Access, 9, 34570-34589, 2021.
  • 20. Hassan Q., Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renew. Energy, 164,375-90, 2021. 21. Celik, E., Öztürk, N., First application of symbiotic organisms search algorithm to off-line optimization of PI parameters for DSP-based DC motor drives, Neural Computing and Applications, 30 (5), 1689-1699, 2018.
  • 22. Genc N., Uzmus H., Iskender I., Dynamic Behavior of Dc-Dc Boost Converter Controlled with Cascade PI-ASC, IEEE 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti-Romania, 1-4, 30 June-2 July, 2016.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hasan Üzmuş 0000-0001-7851-0041

Naci Genç 0000-0001-5673-1708

Mehmet Ali Çelik 0000-0001-9221-1099

Yayımlanma Tarihi 12 Nisan 2023
Gönderilme Tarihi 25 Ocak 2022
Kabul Tarihi 24 Ekim 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Üzmuş, H., Genç, N., & Çelik, M. A. (2023). FV sistemler için DSP tabanlı hibrit kontrol yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2251-2260. https://doi.org/10.17341/gazimmfd.1062711
AMA Üzmuş H, Genç N, Çelik MA. FV sistemler için DSP tabanlı hibrit kontrol yöntemi. GUMMFD. Nisan 2023;38(4):2251-2260. doi:10.17341/gazimmfd.1062711
Chicago Üzmuş, Hasan, Naci Genç, ve Mehmet Ali Çelik. “FV Sistemler için DSP Tabanlı Hibrit Kontrol yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 4 (Nisan 2023): 2251-60. https://doi.org/10.17341/gazimmfd.1062711.
EndNote Üzmuş H, Genç N, Çelik MA (01 Nisan 2023) FV sistemler için DSP tabanlı hibrit kontrol yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 4 2251–2260.
IEEE H. Üzmuş, N. Genç, ve M. A. Çelik, “FV sistemler için DSP tabanlı hibrit kontrol yöntemi”, GUMMFD, c. 38, sy. 4, ss. 2251–2260, 2023, doi: 10.17341/gazimmfd.1062711.
ISNAD Üzmuş, Hasan vd. “FV Sistemler için DSP Tabanlı Hibrit Kontrol yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (Nisan 2023), 2251-2260. https://doi.org/10.17341/gazimmfd.1062711.
JAMA Üzmuş H, Genç N, Çelik MA. FV sistemler için DSP tabanlı hibrit kontrol yöntemi. GUMMFD. 2023;38:2251–2260.
MLA Üzmuş, Hasan vd. “FV Sistemler için DSP Tabanlı Hibrit Kontrol yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 4, 2023, ss. 2251-60, doi:10.17341/gazimmfd.1062711.
Vancouver Üzmuş H, Genç N, Çelik MA. FV sistemler için DSP tabanlı hibrit kontrol yöntemi. GUMMFD. 2023;38(4):2251-60.