Araştırma Makalesi
BibTex RIS Kaynak Göster

Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri

Yıl 2024, , 1417 - 1426, 20.05.2024
https://doi.org/10.17341/gazimmfd.1155788

Öz

Mineral yünü ve delikli paneller gibi geleneksel ses yutucu malzemeler düşük frekans bölgesinde zayıf akustik performans göstermektedir. Buna karşın, akustik metayüzeyler yapısal özellikleri doğrultusunda istenilen frekans aralığında dalga boyu altı kalınlığında yüksek ses yutumu sağlayabilir. Bu çalışmada ses yutucu metayüzeyin geometrik parametrelerindeki değişimin akustik performansına etkilerini sunuyoruz. Metayüzey, dış katmanında delikli yüzey ve arkasında hacimsel sarmallı kanallardan oluşmaktadır. Delik sayısı, panel kalınlığı, delik çapı ve kanal derinliği parametrelerinin ses yutum performansına etkisi irdelenmiştir. Akustik analizler COMSOL Çoklu Fizik yazılımının Basınç Akustiği modülü ile gerçekleştirilmiştir. Teorik ve sayısal sonuçların uyumlu bir şekilde örtüştüğü görülmektedir. Tasarlanan metayüzey ince kesitli yapısı ile istenilen frekans aralığında yüksek ses yutumunu sağlayabilmektedir. Bu nedenle hacim akustiği ve gürültü kontrolü alanlarında geleneksel malzemelere seçenek olması beklenmektedir.

Teşekkür

Caner Baydur, Çin Devlet Bursu kapsamında yüksek lisans eğitimi süresince sağladıkları maddi destekleri için Çin Burs Konseyi'ne (CSC) ve 2021-2022 yılları arasında sağladığı burs desteği için Türk Fizik Vakfı'na teşekkür eder.

Kaynakça

  • Liu C.R., Wu J.H., Yang Z., Ma F., Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance, Composite Structures, 246, 112366, 2020.
  • Chen S., Fan Y., Yang F., Jin Y., Fu Q., Zheng J., Zhang F., Engineering coiling-up space metasurfaces for broadband low-frequency acoustic absorption, Phys. Status Solidi RRL, 1900426, 2019.
  • Selamet A., Lee I., Helmholtz resonator with extended neck, J. Acoust. Soc. Am., 113 (4), 1975-1985, 2003.
  • Griffin S., Lane S.A., Huybrechts S., Coupled helmholtz resonators for acoustic attenuation, Journal of Vibration and Acoustics, 123 (11), 2001.
  • Xu M.B., Selamet A, Kim H., Dual helmholtz resonator, Applied Acoustics, 71, 822–829, 2010.
  • Mei J., Ma G., Yang M., Yang Z., Wen W., Sheng P., Dark acoustic metamaterials as super absorbers for low-frequency sound, Nature Communications, DoI: 10.1038/ncomms1758, 2012.
  • Ma G., Yang M., Xiao S., Yang Z., Sheng P., Acoustic metasurface with hybrid resonances, Nature Materials, 13, 873-878, 2014.
  • Fu C., Zhang X., Yang M., Xiao S., Yang Z., Hybrid membrane resonators for multiple frequency asymmetric absorption and reflection in large waveguide, Appl. Phys. Lett. 110, 021901, 2017.
  • Chen Y., Huang G., Zhou X., Hu G., Sun, C.T., Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model, J.Acoust.Soc.Am., 136 (6), 2926-2934, 2014.
  • Xing T., Gai X., Zhao J., Li X., Cai Z., Guan X., Wang F., Low frequency sound absorption of adjustable membrane-type acoustic metamaterials, Applied Acoustics, 188, 108586, 2022.
  • Ang L.Y.L., Koh Y.K., Lee H.P., Plate-type acoustic metamaterials: experimental evaluation of a modular large-scale design for low-frequency noise control, Acoustics, 1, 354–368, 2019.
  • Maa D.Y., Theory and design of microperforated panel sound-absorbing constructions, Scientia Sinica, 18 (1), 1975.
  • Maa D.Y., Design of microperforated panel constructions, Acta Acustica, 13 (3), 1988.
  • Maa D.Y., Potential of microperforated panel absorbers, J. Acoust. Soc. Am., 104 (5), 1998.
  • Cobo P., Colina C., Roibás-Millán E., Chimeno M., Simón F., A wideband triple-layer microperforated panel sound absorber, Composite Structures, 226, 111226, 2019.
  • Wang C., Huang L., On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths, J.Acoust.Soc.Am., 130 (1), 208-118, 2011.
  • Stinson M.R., The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross- sectional shape, J. Acoust.Soc. Am., 89 (2), 550-558, 1991.
  • Sakagami K., Nakamori T., Morimoto M., Yairi M., Double-leaf microperforated panel space absorbers: A revised theory and detailed analysis, Applied Acoustics, 70, 703–709, 2009.
  • Mosa A.İ., Putra A., Ramlan R., Prasetiyo I., Esraa A.A., Theoretical model of absorption coefficient of an inhomogeneous MPP absorber with multi-cavity depths, Applied Acoustics, 146, 409–419, 2019.
  • Li X., Wu Q., Kang L., and Liu B., Design of multiple parallel-arranged perforated panel absorbers for low frequency sound absorption, Materials, 12, 2099, 2019.
  • Tang Y., Ren S., Meng H., Xin F., Huang L., Chen T., Zhang C., Lu T.J., Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound, Scientific Reports,| 7:43340 | DOI: 10.1038/srep43340.
  • Wu P., Mu Q., , Wu X., Wang L., Li X., Zhou Y., Wang S., Huang Y., Wen W., Acoustic absorbers at low frequency based on split-tube metamaterials, Physics Letters A, 383, 2361–2366, 2019.
  • Peng X.,, Ji J., Jing Y., Composite honeycomb metasurface panel for broadband sound absorption, The Journal of the Acoustical Society of America, 144, EL255-EL261, 2018.
  • Zhang C., Hu X., Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability, Physical Review Applied, 6, 064025, 2016.
  • Shao C., Long H., Cheng Y., Liu X., Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial, Scientific Reports, 9:13482, 2019.
  • Tang Y., Xin F., Huang L., Lu T., Deep subwavelength acoustic metamaterial for low-frequency sound absorption, EPL, 118, 44002, 2017.
  • Yang M., Chen S., Fu C., Sheng P., Optimal sound-absorbing structures, Materials Horizons, DOI: 10.1039/C7MH00129K, 2017.
  • Zhou Z., Huang S., Li D., Zhu J., Li Y., Broadband impedance modulation via non-local acoustic metamaterials, Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab171, 2021.
  • Duan M., Yu C., Xin F., Lu T.J., Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband Appl. Phys. Lett., 118, 071904, 2021.
  • Xu Z.X., Meng H.Y., Chen A., Yang J., Liang B., Cheng J.C., Tunable low-frequency and broadband acoustic metamaterial absorber, J. Appl. Phys., 129, 094502, 2021.
  • Sui N., Yan X., Huang T.Y., Xu J., Yuan F.G. Jing Y., A lightweight yet sound-proof honeycomb acoustic metamaterial, Applied Physics Letters, 106, 171905, 2015.
  • Wang X., Luo X., Zhao H., Huang Z., Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials, Appl. Phys. Lett., 112, 021901, 2018.
  • Jung J.W., Kim J.E., Lee J.W., Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range, Appl. Phys. Lett., 112, 041903, 2018.
  • Melnikov A., Maeder M., Friedrich N., Acoustic metamaterial capsule for reduction of stage machinery noise, The Journal of the Acoustical Society of America, 147, 1491, 2020.
  • Yang Z., Dai H.M., Chan N.H., Ma G.C., Sheng P., Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime, Applied Physics Letters, 96, 041906, 2010.
  • Kumar S., Bhushan P., Prakash O., Bhattacharya S., Double negative acoustic metastructure for attenuation of acoustic emissions, Appl. Phys. Lett., 112, 101905, 2018.
  • Kim S.H., Lee S.H., Air transparent soundproof window, AIP Advances, 4, 117123, 2014.
  • Shen C., Xie Y., Li J., Cummer S.A., Jing Y., Acoustic metacages for sound shielding with steady air flow, Journal of Applied Physics 123, 124501, 2018.
  • Ge Y., Sun H-X., Yuan S-Q., Lai Y., Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms, Appl. Phys. Lett., 112, 243502, 2018.
  • Zhu Y., Fan X., Liang B., Cheng J., Jing Y., Ultrathin Acoustic Metasurface-Based Schroeder Diffuser, Physical Review X, 7, 021034, 2017.
  • Jiménez N., Groby J-P., García V.R., Spiral sound‐diffusing metasurfaces based on holographic vortices, Scientific Reports, 11:10217, 2021.
  • Jiménez N., CoX T.J., GarcíA V.R., GrobY J.P., Metadiffusers: Deep-subwavelength sound diffusers, Scientific Reports, 7: 5389, 2017.
  • Li Y., Liang B., Gu Z.M., Zou X.Y., Cheng J.C., Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Scientific Reports, 3:2546, DOI: 10.1038/srep02546, 2013.
  • Xie Y., Wang W., Chen H., Konneker A., Popa B.I., Cummer S.A., Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nature Communications, 5:5553, DOI: 10.1038/ncomms6553, 2014.
  • Zhang S., Xia C., Fang N., Broadband Acoustic Cloak for Ultrasound Waves, Physical Review Letters, 106, 024301, 2011.
  • Zigoneanu L., Popa B.I., Cummer S.A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials, DOI: 10.1038/NMAT3901, 2014.
  • Popa B.I., Zigoneanu L., Cummer S.A., Experimental acoustic ground cloak in air, PRL 106, 253901, DOI: 10.1103/PhysRevLett.106.253901, 2011.
  • Ghaffarivardavagh R., Nikolajczyk J., Anderson S., Zhang X., Ultra-open acoustic metamaterial silencer based on Fano-like interference, Physıcal Review B, 99, 024302, DOI: 10.1103/PhysRevB.99.024302, 2019.
  • Sun M., Fang X., Mao D., Wang X., Li Y., Broadband Acoustic Ventilation Barriers, Phys. Rev. Applied 13, 044028, DOI: 10.1103/PhysRevApplied.13.044028, 2020.
  • Dong R., Mao D., Wang X., Li Y., Ultrabroadband Acoustic Ventilation Barriers via Hybrid-Functional Metasurfaces, Physical Review Applied, 15, 024044, DOI: 10.1103/PhysRevApplied.15.024044, 2021.
  • Xiang X., Wu X., Li X., Wu P., He H., Mu Q., Wang S., Huang Y., Wen W., Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows, Extreme Mechanics Letter, 39, 100786, 2020.
  • Xiang X., Tian H., Huang Y., Wu X., Wen W., Manually tunable ventilated metamaterial absorbers, Appl. Phys. Lett., 118, 053504, https://doi.org/10.1063/5.0037547, 2021.
  • Palma G., Mao H., Burghignoli L., Göransson P., Iemma U., Acoustic metamaterials in aeronautics, Appl. Sci., 8, 971; doi:10.3390/app8060971, 2018.
  • Assouar B, Liang B, Wu Y, Li Y, Cheng J-C., Acoustic metasurfaces, Nature Reviews Materials., http:// dx.doi.org/10.1038/s41578-018-0061-4.
  • Wu F., Xiao Y., Yu D., Zhao H., Wang Y., Wen J., Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels, Appl. Phys. Lett. 114 (15), 151901, 2019.
  • Wang Y., Zhao H., Yang H., Zhong J., Wen J., A space-coiled acoustic metamaterial with tunable low-frequency absorption, A Letters Journal Exploring the Frontiers of Physics, 120, 54001, 2018.
  • Liu C.R., Wu J.H., Chen X., Ma F., A thin low-frequency broadband metasurface with multi-order sound absorption, J. Phys. D: Appl. Phys., 52, 105302, 2019.
  • Zhang C., Hu X., Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability, Physical Review Applied, 6, 064025, 2016.
  • Liu Y., Ren S., Sun W., Lei Y., Wang H., Zeng X., Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity, Appl. Phys. Lett., 119, 101901, 2021.
  • Liu C.R., Wu J.H., Yang Z., Ma F., Ultra-broadband acoustic absorption of a thin microperforated panel T metamaterial with multi-order resonance, Composite Structures, 246, 112366, 2020.
  • Liang Q., Lv P., He J., Wu Y., Ma F., Chen T., A controllable low-frequency broadband sound absorbing metasurface, J. Phys. D: Appl. Phys., 54, 355109, 2021.
  • Almeida G.N., Erasmo F. Vergara, Leandro R. Barbosa, Ricardo Brum, Low-frequency sound absorption of a metamaterial with symmetrical-coiled-up spaces, Applied Acoustics, 172, 107593, 2021.
  • Chen W., Wu F., Wen J., Ju Z., Yao L., Zhao H., Wang Y., Xiao Y., Low-frequency sound absorber based on micro-slit entrance and space-coiling channels, Jpn. J. Appl. Phys., 59 045503, 2020.
  • Huang S., Fang X., Wang X., Assouar B., Cheng Q., Li Y., Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Appl. Phys. Lett., 113, 23350, https://doi.org/10.1063/1.5063289, 2018.
  • Kong D., Huang S., Li D., Cai C., Zhou Z., Liu B., Cao G., Chen X., Li Y., Liu S., Low-frequency multi-order acoustic absorber based on spiral metasurface, The Journal of the Acoustical Society of America, 150, (12), https://doi.org/10.1121/10.0005134, 2021.
  • Donda K., Zhu Y., Fan S.W., Cao L., Li Y., Assouar B., Extreme low-frequency ultrathin acoustic absorbing metasurface, Appl. Phys. Lett., 115, 173506, https://doi.org/10.1063/1.5122704, 2019.
  • Li D., Huang S., Mo F., Wang X., Li Y., Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamberChin. Sci. Bull., 65, 1420-1427, https://doi.org/10.1360/TB-2019-0703, 2020.
  • Donda K., Zhu Y., Merkel A., Fan S.W., Cao L., Wan S. Assouar B., Ultrathin acoustic absorbing metasurface based on deep learning approach, Smart Mater. Struct., 30 (8), 085003, 2021.

Effects of geometric parameters on sound absorption performance of acoustic metasurface with subwavelength thickness

Yıl 2024, , 1417 - 1426, 20.05.2024
https://doi.org/10.17341/gazimmfd.1155788

Öz

Conventional sound-absorbing materials such as mineral wool and perforated panels have inadequate acoustic performance in the low-frequency region. On the other hand, acoustic metasurfaces can provide high absorption with subwavelength thickness in the desired frequency range according to their structural properties. Herein, we present the effects of changes in geometric parameters of a sound-absorbing metasurface on acoustic performance. The metasurface consists of a perforated panel in its outer layer and coiled-up channels behind the panel. The impacts of hole numbers, panel thickness, hole diameter and channel depth parameters on sound absorption performance were examined. Acoustic analyses were performed with the Pressure Acoustics module of COMSOL MultiPhysics. Theoretical and numerical results are in agreement. The metasurface provides perfect sound absorption in the desired frequency range with an ultra-thin scale. That makes it an alternative to traditional materials in room acoustics and noise control.

Kaynakça

  • Liu C.R., Wu J.H., Yang Z., Ma F., Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance, Composite Structures, 246, 112366, 2020.
  • Chen S., Fan Y., Yang F., Jin Y., Fu Q., Zheng J., Zhang F., Engineering coiling-up space metasurfaces for broadband low-frequency acoustic absorption, Phys. Status Solidi RRL, 1900426, 2019.
  • Selamet A., Lee I., Helmholtz resonator with extended neck, J. Acoust. Soc. Am., 113 (4), 1975-1985, 2003.
  • Griffin S., Lane S.A., Huybrechts S., Coupled helmholtz resonators for acoustic attenuation, Journal of Vibration and Acoustics, 123 (11), 2001.
  • Xu M.B., Selamet A, Kim H., Dual helmholtz resonator, Applied Acoustics, 71, 822–829, 2010.
  • Mei J., Ma G., Yang M., Yang Z., Wen W., Sheng P., Dark acoustic metamaterials as super absorbers for low-frequency sound, Nature Communications, DoI: 10.1038/ncomms1758, 2012.
  • Ma G., Yang M., Xiao S., Yang Z., Sheng P., Acoustic metasurface with hybrid resonances, Nature Materials, 13, 873-878, 2014.
  • Fu C., Zhang X., Yang M., Xiao S., Yang Z., Hybrid membrane resonators for multiple frequency asymmetric absorption and reflection in large waveguide, Appl. Phys. Lett. 110, 021901, 2017.
  • Chen Y., Huang G., Zhou X., Hu G., Sun, C.T., Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model, J.Acoust.Soc.Am., 136 (6), 2926-2934, 2014.
  • Xing T., Gai X., Zhao J., Li X., Cai Z., Guan X., Wang F., Low frequency sound absorption of adjustable membrane-type acoustic metamaterials, Applied Acoustics, 188, 108586, 2022.
  • Ang L.Y.L., Koh Y.K., Lee H.P., Plate-type acoustic metamaterials: experimental evaluation of a modular large-scale design for low-frequency noise control, Acoustics, 1, 354–368, 2019.
  • Maa D.Y., Theory and design of microperforated panel sound-absorbing constructions, Scientia Sinica, 18 (1), 1975.
  • Maa D.Y., Design of microperforated panel constructions, Acta Acustica, 13 (3), 1988.
  • Maa D.Y., Potential of microperforated panel absorbers, J. Acoust. Soc. Am., 104 (5), 1998.
  • Cobo P., Colina C., Roibás-Millán E., Chimeno M., Simón F., A wideband triple-layer microperforated panel sound absorber, Composite Structures, 226, 111226, 2019.
  • Wang C., Huang L., On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths, J.Acoust.Soc.Am., 130 (1), 208-118, 2011.
  • Stinson M.R., The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross- sectional shape, J. Acoust.Soc. Am., 89 (2), 550-558, 1991.
  • Sakagami K., Nakamori T., Morimoto M., Yairi M., Double-leaf microperforated panel space absorbers: A revised theory and detailed analysis, Applied Acoustics, 70, 703–709, 2009.
  • Mosa A.İ., Putra A., Ramlan R., Prasetiyo I., Esraa A.A., Theoretical model of absorption coefficient of an inhomogeneous MPP absorber with multi-cavity depths, Applied Acoustics, 146, 409–419, 2019.
  • Li X., Wu Q., Kang L., and Liu B., Design of multiple parallel-arranged perforated panel absorbers for low frequency sound absorption, Materials, 12, 2099, 2019.
  • Tang Y., Ren S., Meng H., Xin F., Huang L., Chen T., Zhang C., Lu T.J., Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound, Scientific Reports,| 7:43340 | DOI: 10.1038/srep43340.
  • Wu P., Mu Q., , Wu X., Wang L., Li X., Zhou Y., Wang S., Huang Y., Wen W., Acoustic absorbers at low frequency based on split-tube metamaterials, Physics Letters A, 383, 2361–2366, 2019.
  • Peng X.,, Ji J., Jing Y., Composite honeycomb metasurface panel for broadband sound absorption, The Journal of the Acoustical Society of America, 144, EL255-EL261, 2018.
  • Zhang C., Hu X., Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability, Physical Review Applied, 6, 064025, 2016.
  • Shao C., Long H., Cheng Y., Liu X., Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial, Scientific Reports, 9:13482, 2019.
  • Tang Y., Xin F., Huang L., Lu T., Deep subwavelength acoustic metamaterial for low-frequency sound absorption, EPL, 118, 44002, 2017.
  • Yang M., Chen S., Fu C., Sheng P., Optimal sound-absorbing structures, Materials Horizons, DOI: 10.1039/C7MH00129K, 2017.
  • Zhou Z., Huang S., Li D., Zhu J., Li Y., Broadband impedance modulation via non-local acoustic metamaterials, Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab171, 2021.
  • Duan M., Yu C., Xin F., Lu T.J., Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband Appl. Phys. Lett., 118, 071904, 2021.
  • Xu Z.X., Meng H.Y., Chen A., Yang J., Liang B., Cheng J.C., Tunable low-frequency and broadband acoustic metamaterial absorber, J. Appl. Phys., 129, 094502, 2021.
  • Sui N., Yan X., Huang T.Y., Xu J., Yuan F.G. Jing Y., A lightweight yet sound-proof honeycomb acoustic metamaterial, Applied Physics Letters, 106, 171905, 2015.
  • Wang X., Luo X., Zhao H., Huang Z., Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials, Appl. Phys. Lett., 112, 021901, 2018.
  • Jung J.W., Kim J.E., Lee J.W., Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range, Appl. Phys. Lett., 112, 041903, 2018.
  • Melnikov A., Maeder M., Friedrich N., Acoustic metamaterial capsule for reduction of stage machinery noise, The Journal of the Acoustical Society of America, 147, 1491, 2020.
  • Yang Z., Dai H.M., Chan N.H., Ma G.C., Sheng P., Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime, Applied Physics Letters, 96, 041906, 2010.
  • Kumar S., Bhushan P., Prakash O., Bhattacharya S., Double negative acoustic metastructure for attenuation of acoustic emissions, Appl. Phys. Lett., 112, 101905, 2018.
  • Kim S.H., Lee S.H., Air transparent soundproof window, AIP Advances, 4, 117123, 2014.
  • Shen C., Xie Y., Li J., Cummer S.A., Jing Y., Acoustic metacages for sound shielding with steady air flow, Journal of Applied Physics 123, 124501, 2018.
  • Ge Y., Sun H-X., Yuan S-Q., Lai Y., Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms, Appl. Phys. Lett., 112, 243502, 2018.
  • Zhu Y., Fan X., Liang B., Cheng J., Jing Y., Ultrathin Acoustic Metasurface-Based Schroeder Diffuser, Physical Review X, 7, 021034, 2017.
  • Jiménez N., Groby J-P., García V.R., Spiral sound‐diffusing metasurfaces based on holographic vortices, Scientific Reports, 11:10217, 2021.
  • Jiménez N., CoX T.J., GarcíA V.R., GrobY J.P., Metadiffusers: Deep-subwavelength sound diffusers, Scientific Reports, 7: 5389, 2017.
  • Li Y., Liang B., Gu Z.M., Zou X.Y., Cheng J.C., Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Scientific Reports, 3:2546, DOI: 10.1038/srep02546, 2013.
  • Xie Y., Wang W., Chen H., Konneker A., Popa B.I., Cummer S.A., Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nature Communications, 5:5553, DOI: 10.1038/ncomms6553, 2014.
  • Zhang S., Xia C., Fang N., Broadband Acoustic Cloak for Ultrasound Waves, Physical Review Letters, 106, 024301, 2011.
  • Zigoneanu L., Popa B.I., Cummer S.A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials, DOI: 10.1038/NMAT3901, 2014.
  • Popa B.I., Zigoneanu L., Cummer S.A., Experimental acoustic ground cloak in air, PRL 106, 253901, DOI: 10.1103/PhysRevLett.106.253901, 2011.
  • Ghaffarivardavagh R., Nikolajczyk J., Anderson S., Zhang X., Ultra-open acoustic metamaterial silencer based on Fano-like interference, Physıcal Review B, 99, 024302, DOI: 10.1103/PhysRevB.99.024302, 2019.
  • Sun M., Fang X., Mao D., Wang X., Li Y., Broadband Acoustic Ventilation Barriers, Phys. Rev. Applied 13, 044028, DOI: 10.1103/PhysRevApplied.13.044028, 2020.
  • Dong R., Mao D., Wang X., Li Y., Ultrabroadband Acoustic Ventilation Barriers via Hybrid-Functional Metasurfaces, Physical Review Applied, 15, 024044, DOI: 10.1103/PhysRevApplied.15.024044, 2021.
  • Xiang X., Wu X., Li X., Wu P., He H., Mu Q., Wang S., Huang Y., Wen W., Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows, Extreme Mechanics Letter, 39, 100786, 2020.
  • Xiang X., Tian H., Huang Y., Wu X., Wen W., Manually tunable ventilated metamaterial absorbers, Appl. Phys. Lett., 118, 053504, https://doi.org/10.1063/5.0037547, 2021.
  • Palma G., Mao H., Burghignoli L., Göransson P., Iemma U., Acoustic metamaterials in aeronautics, Appl. Sci., 8, 971; doi:10.3390/app8060971, 2018.
  • Assouar B, Liang B, Wu Y, Li Y, Cheng J-C., Acoustic metasurfaces, Nature Reviews Materials., http:// dx.doi.org/10.1038/s41578-018-0061-4.
  • Wu F., Xiao Y., Yu D., Zhao H., Wang Y., Wen J., Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels, Appl. Phys. Lett. 114 (15), 151901, 2019.
  • Wang Y., Zhao H., Yang H., Zhong J., Wen J., A space-coiled acoustic metamaterial with tunable low-frequency absorption, A Letters Journal Exploring the Frontiers of Physics, 120, 54001, 2018.
  • Liu C.R., Wu J.H., Chen X., Ma F., A thin low-frequency broadband metasurface with multi-order sound absorption, J. Phys. D: Appl. Phys., 52, 105302, 2019.
  • Zhang C., Hu X., Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability, Physical Review Applied, 6, 064025, 2016.
  • Liu Y., Ren S., Sun W., Lei Y., Wang H., Zeng X., Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity, Appl. Phys. Lett., 119, 101901, 2021.
  • Liu C.R., Wu J.H., Yang Z., Ma F., Ultra-broadband acoustic absorption of a thin microperforated panel T metamaterial with multi-order resonance, Composite Structures, 246, 112366, 2020.
  • Liang Q., Lv P., He J., Wu Y., Ma F., Chen T., A controllable low-frequency broadband sound absorbing metasurface, J. Phys. D: Appl. Phys., 54, 355109, 2021.
  • Almeida G.N., Erasmo F. Vergara, Leandro R. Barbosa, Ricardo Brum, Low-frequency sound absorption of a metamaterial with symmetrical-coiled-up spaces, Applied Acoustics, 172, 107593, 2021.
  • Chen W., Wu F., Wen J., Ju Z., Yao L., Zhao H., Wang Y., Xiao Y., Low-frequency sound absorber based on micro-slit entrance and space-coiling channels, Jpn. J. Appl. Phys., 59 045503, 2020.
  • Huang S., Fang X., Wang X., Assouar B., Cheng Q., Li Y., Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Appl. Phys. Lett., 113, 23350, https://doi.org/10.1063/1.5063289, 2018.
  • Kong D., Huang S., Li D., Cai C., Zhou Z., Liu B., Cao G., Chen X., Li Y., Liu S., Low-frequency multi-order acoustic absorber based on spiral metasurface, The Journal of the Acoustical Society of America, 150, (12), https://doi.org/10.1121/10.0005134, 2021.
  • Donda K., Zhu Y., Fan S.W., Cao L., Li Y., Assouar B., Extreme low-frequency ultrathin acoustic absorbing metasurface, Appl. Phys. Lett., 115, 173506, https://doi.org/10.1063/1.5122704, 2019.
  • Li D., Huang S., Mo F., Wang X., Li Y., Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamberChin. Sci. Bull., 65, 1420-1427, https://doi.org/10.1360/TB-2019-0703, 2020.
  • Donda K., Zhu Y., Merkel A., Fan S.W., Cao L., Wan S. Assouar B., Ultrathin acoustic absorbing metasurface based on deep learning approach, Smart Mater. Struct., 30 (8), 085003, 2021.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Akustik ve Gürültü Kontrolü (Mimari Akustik hariç)
Bölüm Makaleler
Yazarlar

Caner Baydur 0000-0002-4207-1937

Meral Bayraktar 0000-0002-8779-0476

Erken Görünüm Tarihi 19 Ocak 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 5 Ağustos 2022
Kabul Tarihi 2 Ağustos 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Baydur, C., & Bayraktar, M. (2024). Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1417-1426. https://doi.org/10.17341/gazimmfd.1155788
AMA Baydur C, Bayraktar M. Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri. GUMMFD. Mayıs 2024;39(3):1417-1426. doi:10.17341/gazimmfd.1155788
Chicago Baydur, Caner, ve Meral Bayraktar. “Dalga Boyu Altı kalınlığındaki Akustik metayüzeyin Geometrik Parametrelerinin Ses Yutum performansına Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1417-26. https://doi.org/10.17341/gazimmfd.1155788.
EndNote Baydur C, Bayraktar M (01 Mayıs 2024) Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1417–1426.
IEEE C. Baydur ve M. Bayraktar, “Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri”, GUMMFD, c. 39, sy. 3, ss. 1417–1426, 2024, doi: 10.17341/gazimmfd.1155788.
ISNAD Baydur, Caner - Bayraktar, Meral. “Dalga Boyu Altı kalınlığındaki Akustik metayüzeyin Geometrik Parametrelerinin Ses Yutum performansına Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1417-1426. https://doi.org/10.17341/gazimmfd.1155788.
JAMA Baydur C, Bayraktar M. Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri. GUMMFD. 2024;39:1417–1426.
MLA Baydur, Caner ve Meral Bayraktar. “Dalga Boyu Altı kalınlığındaki Akustik metayüzeyin Geometrik Parametrelerinin Ses Yutum performansına Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1417-26, doi:10.17341/gazimmfd.1155788.
Vancouver Baydur C, Bayraktar M. Dalga boyu altı kalınlığındaki akustik metayüzeyin geometrik parametrelerinin ses yutum performansına etkileri. GUMMFD. 2024;39(3):1417-26.