Araştırma Makalesi
BibTex RIS Kaynak Göster

S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi

Yıl 2024, , 2057 - 2076, 20.05.2024
https://doi.org/10.17341/gazimmfd.1176877

Öz

Sandviç panel kompozitler, malzeme teknolojisi uygulamalarında geniş bir kullanım alanına sahiptir. Tasarlanan sandviç panel kompozit malzemesi; üst ve alt levha olarak paslanmaz çelik-316, çekirdek malzemesi alüminyum 1050A-0 ve bağlayıcı eleman olarak DP-8405 akrilik yapıştırıcıdan yapılmıştır. S-çekirdekli kompozit sandviç panellerin eğilme davranışları, üç nokta eğilme testleri ve sonlu eleman modelleri ile incelenmiştir. Kompozit elemanların eğilme davranışlarının varyasyonlar üzerindeki etkisini karakterize etmek için sonlu eleman modelleri geliştirilmiştir. Genel olarak, kompozit S-çekirdekli sandviç yapıların spesifik eğilme modülü ve mukavemeti, literatürdeki çekirdek yapıları ile karşılaştırılabilir. Bu doğrultuda, ağırlık ve yoğunluk açısından verimli hibrit kompozit sandviç panellerin elde edilmesi için bir kılavuz sağlamak üzere minimum ağırlık tasarımı kullanılmıştır. Hasar yükleri incelendiğinde, çekirdek kalınlıkları arttıkça hasar yüklerinin arttığı sonucuna varılmıştır. İlaveten, S-şekilli çekirdek malzemesinin eğrilik yarıçapı arttıkça hasar yükleri azalmıştır. Özellikle çekirdek kalınlığındaki azalma ve eğrilik yarıçaplarındaki artış, sehim eğrilerinde artışa neden olmuştur.

Destekleyen Kurum

İNÖNÜ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ BİRİMİ

Proje Numarası

BAP Proje Kodu: FDK-2020-2306

Teşekkür

Yazarlar, projeyi finanse ettiği için İnönü Üniversitesi'ne teşekkür ederler.

Kaynakça

  • Arslan M, Güler O, Alver U..’’ The investigation of the mechanical properties of sandwich panel composites with different surface and core materials’’. Pamukkale University Journal of Engineering Sciences, 24(6),1062-1068, 2018
  • Chen S, Tan X, Hu J, Zhu S, Wang B, Wang L, Jin Y, Wu L., A novel gradient negative stiffness honeycomb for recoverable energy absorption, Composites Part B: Engineering ,Volume 2, 108745, 2021
  • J. Cao et al.,Damage behavior of a bonded sandwich beam with corrugated core under 3-point bending, Material Design Volume, 95, 165-172, 2016
  • Y. Zhang et al., Experimental and numerical analysis of dynamic compressive response of Nomex honeycombs, Composite Part B:Engineering,Volume 148, 27-39, 2018
  • X. Wu et al., Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure, Composite Structure, 165-172, 2019
  • G.-D. Xu et al., Bending behavior of graded corrugated truss core composite sandwich beams, Composite Structure, 342-251, 2016
  • T. Li et al.,Bending behavior of sandwich composite structures with tunable 3D-printed core materials, Composite Structure, 46-57, 2017
  • F.C.Potes et al.,Development and characterization of a natural lightweight composite solution for aircraft structural applications, Composite Structures, 430-440, 2016
  • Forsberg J, Nilsson L., Evaluation of response surface methodologies used in crash worthiness optimization, International Journal of Impact Engineering, 759-777, 2006
  • Ge Qi et al.,A hybrid joining insert for sandwich panels with pyramidal lattice truss cores, Composite Structures, 241, 112-123, 2020
  • Lu X, Tan V.B.C, Tay T.E.2020. “Auxeticity of monoclinic tetrachiral honeycombs’’ Composite Structures, Volume 241, 112067
  • Naresh K et al.,Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb sandwich structures, Composite Structures, Volume 256, 113059, 2021
  • Newstead S, Watson L, CameronM.,Vehicle Safety Ratings Estimated From Police Reported Crash Data: 2008 Update, Monash University Accident Research Center Report, Melbourne, Australia, 280, 2008
  • X.M. Xiang et al.,Quasi-static bending behavior of sandwich beams with thin-walled tubes as core, Int J Mech Sci, 55-62, 2015
  • A. Petras et al.,Failure mode maps for honeycomb sandwich panels, Composite Structure, 237-252, 1999
  • Z. Sun et al.,Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal sub- strates with different surface morphology, Composite Part B Engineering, 38-45, 2015
  • Pan SD, Wu LZ, Sun YG et al., Fracture test for double cantilever beam of honeycomb sandwich panels, Materials Letters, 62, 523-526, 2008
  • Qin Q, Chen S, Li K, Jiang M, Cui T, Zhang J., Structural impact damage of metal honeycomb sandwich plates, composite, Volume 252, 112719, 2020
  • Qin Q H, ve Wang TJ., Low-vel°City impact response of fully clamped metal foam core sandwich beam incorporating l°Cal denting effect, Composite Structures,Volume 96, 346-356, 2013
  • Zhang X, Xu F,Zang Y,Feng W.,Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact composite, Volume 236, 111882, 2020
  • Xiong J, Ma L, Wu, L, Wang, B, & Vaziri., A Fabrication and crushing behavior of low-density carbon fiber composite pyramidal truss structures, Composite Structures, Volume 92, 2695-2702, 2010
  • Wang HP, Wu CT, Guo Y, Mark E, Botkin A. 2009. ‘’Coupled meshfree/finite element method for automotive crashworthiness simulations”. International Journal of Impact Engineering, 36(10-11), 1210-1222
  • Mei J, Liu J, Huang W., Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling, Composite Structures, Volume 284, 11520, 2022
  • Sokolinsky VS, Shen H, Vaikhanski L and Nutt SR., Experimental and analytical study of nonlinear bending response of sandwich beams, Composite Structures, 60, 219-229, 2003
  • Aluminum 1050-O. https://www.matweb.com/search/DataSheet.aspx?MatGUID=273c1ffbdc134a8292c704da3ee2ff35. Erişim Tarihi Eylül 18, 2022
  • Stainless steel-Grade316.https://www.azom.com/properties.aspx?ArticleID=863. Erişim Tarihi Eylül 18, 2022
  • Stainless steel 316. https://www.matweb.com/search/DataSheet.aspx?MatGUID=3a413dabd215462da3408e6e8b761349. Erişim tarihi Eylül 18, 2022
  • Öztemiz H.M.,Temiz Ş, Mechanical Behaviors Of Different Radii Of Curvature S-Shaped Core Sandwich Composites Subjected To Bending Load, International Asian Congress On Contemporary Sciences-VI, Van-Türkiye, 200-207, 27-29 May 2022
  • Öztemiz H.M.,Temiz Ş, Mechanical Behaviors Of Different Array With S-Shaped Core Sandwich Composites Subjected To Bending Load, International Asian Congress On Contemporary Sciences-VI, Van-Türkiye, 208-216, 27-29 May 2022

Three-point bending behaviors of the s-core sandwich panel: Finite element modeling and experimental investigation

Yıl 2024, , 2057 - 2076, 20.05.2024
https://doi.org/10.17341/gazimmfd.1176877

Öz

Sandwich panel composites have a wide range of uses in material technology applications. The designed sandwich panel composite material; is made of stainless steel-316 as the top and bottom plate, aluminum 1050A-0 as the core material, and DP-8405 acrylic adhesive as the binding element. Three-point bending tests and finite element models investigated the bending behavior of S-core composite sandwich panels. Finite element models have been developed to characterize the effect of the bending behavior of composite elements on variations. The specific flexural modulus and strength of composite S-core sandwich structures can be compared with core structures in the literature. Accordingly, the minimum weight design provided a guideline for obtaining weight and density-efficient hybrid composite sandwich panels. When the damage loads were examined, it was concluded that they increased as the core thicknesses increased. In addition, the damage loads decreased as the radius of curvature of the S-shaped core material increased. Significantly the decrease in core thickness and increase in radii of curvature caused an increase in deflection curves.

Proje Numarası

BAP Proje Kodu: FDK-2020-2306

Kaynakça

  • Arslan M, Güler O, Alver U..’’ The investigation of the mechanical properties of sandwich panel composites with different surface and core materials’’. Pamukkale University Journal of Engineering Sciences, 24(6),1062-1068, 2018
  • Chen S, Tan X, Hu J, Zhu S, Wang B, Wang L, Jin Y, Wu L., A novel gradient negative stiffness honeycomb for recoverable energy absorption, Composites Part B: Engineering ,Volume 2, 108745, 2021
  • J. Cao et al.,Damage behavior of a bonded sandwich beam with corrugated core under 3-point bending, Material Design Volume, 95, 165-172, 2016
  • Y. Zhang et al., Experimental and numerical analysis of dynamic compressive response of Nomex honeycombs, Composite Part B:Engineering,Volume 148, 27-39, 2018
  • X. Wu et al., Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure, Composite Structure, 165-172, 2019
  • G.-D. Xu et al., Bending behavior of graded corrugated truss core composite sandwich beams, Composite Structure, 342-251, 2016
  • T. Li et al.,Bending behavior of sandwich composite structures with tunable 3D-printed core materials, Composite Structure, 46-57, 2017
  • F.C.Potes et al.,Development and characterization of a natural lightweight composite solution for aircraft structural applications, Composite Structures, 430-440, 2016
  • Forsberg J, Nilsson L., Evaluation of response surface methodologies used in crash worthiness optimization, International Journal of Impact Engineering, 759-777, 2006
  • Ge Qi et al.,A hybrid joining insert for sandwich panels with pyramidal lattice truss cores, Composite Structures, 241, 112-123, 2020
  • Lu X, Tan V.B.C, Tay T.E.2020. “Auxeticity of monoclinic tetrachiral honeycombs’’ Composite Structures, Volume 241, 112067
  • Naresh K et al.,Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb sandwich structures, Composite Structures, Volume 256, 113059, 2021
  • Newstead S, Watson L, CameronM.,Vehicle Safety Ratings Estimated From Police Reported Crash Data: 2008 Update, Monash University Accident Research Center Report, Melbourne, Australia, 280, 2008
  • X.M. Xiang et al.,Quasi-static bending behavior of sandwich beams with thin-walled tubes as core, Int J Mech Sci, 55-62, 2015
  • A. Petras et al.,Failure mode maps for honeycomb sandwich panels, Composite Structure, 237-252, 1999
  • Z. Sun et al.,Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal sub- strates with different surface morphology, Composite Part B Engineering, 38-45, 2015
  • Pan SD, Wu LZ, Sun YG et al., Fracture test for double cantilever beam of honeycomb sandwich panels, Materials Letters, 62, 523-526, 2008
  • Qin Q, Chen S, Li K, Jiang M, Cui T, Zhang J., Structural impact damage of metal honeycomb sandwich plates, composite, Volume 252, 112719, 2020
  • Qin Q H, ve Wang TJ., Low-vel°City impact response of fully clamped metal foam core sandwich beam incorporating l°Cal denting effect, Composite Structures,Volume 96, 346-356, 2013
  • Zhang X, Xu F,Zang Y,Feng W.,Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact composite, Volume 236, 111882, 2020
  • Xiong J, Ma L, Wu, L, Wang, B, & Vaziri., A Fabrication and crushing behavior of low-density carbon fiber composite pyramidal truss structures, Composite Structures, Volume 92, 2695-2702, 2010
  • Wang HP, Wu CT, Guo Y, Mark E, Botkin A. 2009. ‘’Coupled meshfree/finite element method for automotive crashworthiness simulations”. International Journal of Impact Engineering, 36(10-11), 1210-1222
  • Mei J, Liu J, Huang W., Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling, Composite Structures, Volume 284, 11520, 2022
  • Sokolinsky VS, Shen H, Vaikhanski L and Nutt SR., Experimental and analytical study of nonlinear bending response of sandwich beams, Composite Structures, 60, 219-229, 2003
  • Aluminum 1050-O. https://www.matweb.com/search/DataSheet.aspx?MatGUID=273c1ffbdc134a8292c704da3ee2ff35. Erişim Tarihi Eylül 18, 2022
  • Stainless steel-Grade316.https://www.azom.com/properties.aspx?ArticleID=863. Erişim Tarihi Eylül 18, 2022
  • Stainless steel 316. https://www.matweb.com/search/DataSheet.aspx?MatGUID=3a413dabd215462da3408e6e8b761349. Erişim tarihi Eylül 18, 2022
  • Öztemiz H.M.,Temiz Ş, Mechanical Behaviors Of Different Radii Of Curvature S-Shaped Core Sandwich Composites Subjected To Bending Load, International Asian Congress On Contemporary Sciences-VI, Van-Türkiye, 200-207, 27-29 May 2022
  • Öztemiz H.M.,Temiz Ş, Mechanical Behaviors Of Different Array With S-Shaped Core Sandwich Composites Subjected To Bending Load, International Asian Congress On Contemporary Sciences-VI, Van-Türkiye, 208-216, 27-29 May 2022
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hasan Murat Öztemiz 0000-0002-3609-3777

Şemsettin Temiz 0000-0002-6737-3720

Proje Numarası BAP Proje Kodu: FDK-2020-2306
Erken Görünüm Tarihi 17 Mayıs 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 19 Eylül 2022
Kabul Tarihi 20 Kasım 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Öztemiz, H. M., & Temiz, Ş. (2024). S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2057-2076. https://doi.org/10.17341/gazimmfd.1176877
AMA Öztemiz HM, Temiz Ş. S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi. GUMMFD. Mayıs 2024;39(4):2057-2076. doi:10.17341/gazimmfd.1176877
Chicago Öztemiz, Hasan Murat, ve Şemsettin Temiz. “S-çekirdekli Sandviç Panel Kompozitin üç Nokta eğme davranışları: Sonlu Eleman Modelleme Ve Deneysel Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 4 (Mayıs 2024): 2057-76. https://doi.org/10.17341/gazimmfd.1176877.
EndNote Öztemiz HM, Temiz Ş (01 Mayıs 2024) S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 4 2057–2076.
IEEE H. M. Öztemiz ve Ş. Temiz, “S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi”, GUMMFD, c. 39, sy. 4, ss. 2057–2076, 2024, doi: 10.17341/gazimmfd.1176877.
ISNAD Öztemiz, Hasan Murat - Temiz, Şemsettin. “S-çekirdekli Sandviç Panel Kompozitin üç Nokta eğme davranışları: Sonlu Eleman Modelleme Ve Deneysel Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/4 (Mayıs 2024), 2057-2076. https://doi.org/10.17341/gazimmfd.1176877.
JAMA Öztemiz HM, Temiz Ş. S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi. GUMMFD. 2024;39:2057–2076.
MLA Öztemiz, Hasan Murat ve Şemsettin Temiz. “S-çekirdekli Sandviç Panel Kompozitin üç Nokta eğme davranışları: Sonlu Eleman Modelleme Ve Deneysel Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 4, 2024, ss. 2057-76, doi:10.17341/gazimmfd.1176877.
Vancouver Öztemiz HM, Temiz Ş. S-çekirdekli sandviç panel kompozitin üç nokta eğme davranışları: Sonlu eleman modelleme ve deneysel incelemesi. GUMMFD. 2024;39(4):2057-76.